Extensions of Firefly Algorithm for Nonsmooth Nonconvex Constrained Optimization Problems | SpringerLink
Skip to main content

Extensions of Firefly Algorithm for Nonsmooth Nonconvex Constrained Optimization Problems

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Abstract

Firefly Algorithm (FA) is a stochastic population-based algorithm based on the flashing patterns and behavior of fireflies. Original FA was created and successfully applied to solve bound constrained optimization problems. In this paper we present extensions of FA for solving nonsmooth nonconvex constrained global optimization problems. To handle the constraints of the problem, feasibility and dominance rules and a fitness function based on the global competitive ranking, are proposed. To enhance the speed of convergence, the proposed extensions of FA invoke a stochastic local search procedure. Numerical experiments to validate the proposed approaches using a set of well know test problems are presented. The results show that the proposed extensions of FA compares favorably with other stochastic population-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence: Introduction and Applications, pp. 43–86. Springer Verlag, Berlin (2008)

    Chapter  Google Scholar 

  2. Tuba, M.: Swarm intelligence algorithms parameter tuning. In: Proceedings of the American Conference on Applied Mathematics (AMERICAN-MATH 2012), pp. 389–394, Harvard, Cambridge, USA (2012)

    Google Scholar 

  3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  4. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks (Perth, Australia), pp. 1942–1948. IEEE Service Center, Piscataway (1995)

    Google Scholar 

  5. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulations 76, 60–68 (2001)

    Article  Google Scholar 

  6. Yang, X. S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

    Google Scholar 

  7. Dorigo, M.: Optimization, learning and natural algorithms, Ph.D. Thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)


    Google Scholar 

  8. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Press, Nagoya (1995)

    Google Scholar 

  9. Horng, M.H., Liou, R.J.: Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst. Appl. 38(12), 14805–14811 (2011)

    Article  Google Scholar 

  10. Yang, X.S., Hosseini, S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012)

    Article  Google Scholar 

  11. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using Firefly Algorithm. Comput. Struct. 89(23–24), 2325–2336 (2011)

    Article  Google Scholar 

  12. Costa, M.F.P., Rocha, A.M.A.C., Francisco, R.B., Fernandes, E.M.G.P.: Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization. Adv. Oper. Res. 2014, Article ID 215182, 12 (2014)

    Google Scholar 

  13. Costa, M.F.P., Rocha, A.M.A.C., Francisco, R.B., Fernandes, E.M.G.P.: Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear programming. Optimization 65(5), 1085-1104 (2016). doi:10.1080/02331934.2015.1135920

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2), 175–184 (2013)

    Article  Google Scholar 

  16. Fister, I., Fister Jr., I., Yang, X.-S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 13, 34–46 (2013)

    Article  Google Scholar 

  17. Yang, X.-S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)

    Article  Google Scholar 

  18. Ali, M., Zhu, W.X.: A penalty function-based differential evolution algorithm for constrained global optimization. Comput. Optim. Appl. 54(3), 707–739 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive penalty method for genetic algorithms in constrained optimization problems. In: Iba, H. (ed.) Frontiers in Evolutionary Robotics, pp. 9–34. I-Tech Education Publications, Vienna (2008)

    Google Scholar 

  20. Mezura-Montes, E., Coello Coello, C.A.C.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011)

    Article  Google Scholar 

  21. Lemonge, A.C.C., Barbosa, H.J.C., Bernardino, H.S.: Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization. Eng. Comput. Int. J. Comput.-Aided Eng. Softw. 32(8), 2182–2215 (2015)

    Google Scholar 

  22. Runarsson, T.P., Yao, X.: Constrained evolutionary optimization – the penalty function approach. In: Sarker, R., et al. (eds.) Evolutionary Optimization: International Series in Operations Research and Management Science, vol. 48, pp. 87–113. Springer, New York (2003)

    Google Scholar 

  23. Deb, K.: An efficient constraint-handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(0045–7825), 311–338 (2000)

    Article  MATH  Google Scholar 

  24. Birbil, S.I., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C., Deb, K.: Problem definition and evolution criteria for the CEC 2006 special session on constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 17–21 July (2006)

    Google Scholar 

  26. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7(1), 19–44 (1999)

    Article  Google Scholar 

  27. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)

    Article  Google Scholar 

  28. Farmani, R., Wright, J.: Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput. 7(5), 445–455 (2003)

    Article  Google Scholar 

  29. Silva, E.K., Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive constraint handling technique for differential evolution with dynamic use of variants in engineering optimization. Optim. Eng. 12(1–2), 31–54 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Tessema, R, Yen, G.G.: A self adaptive penalty function based algorithm for constrained optimization. In: IEEE Congress on Evolutionary Computation (CEC 2006), pp. 
246–253, Vancouver, Canada (2006)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria A. C. Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Francisco, R.B., Costa, M.F.P., Rocha, A.M.A.C. (2016). Extensions of Firefly Algorithm for Nonsmooth Nonconvex Constrained Optimization Problems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics