An Artificial Fish Swarm Optimization Algorithm to Solve Set Covering Problem | SpringerLink
Skip to main content

An Artificial Fish Swarm Optimization Algorithm to Solve Set Covering Problem

  • Conference paper
  • First Online:
Trends in Applied Knowledge-Based Systems and Data Science (IEA/AIE 2016)

Abstract

The Set Covering Problem (SCP) consists in finding a set of solutions that allow to cover a set of necessities with the minor possible cost. There are many applications of this problem such as rolling production lines or installation of certain services like hospitals. SCP has been solved before with different algorithms like genetic algorithm, cultural algorithm or firefly algorithm among others. The objective of this paper is to show the performance of an Artificial Fish Swarm Algorithm (AFSA) in order to solve SCP. This algorithm, simulates the behavior of a fish shoal inside water and it uses a population of points in space to represent the position of a fish in the shoal. Here we show a study of its simplified version of AFSA in a binary domain with its modifications applied to SCP. This method was tested on SCP benchmark instances from OR-Library website.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  2. Crawford, B., Soto, R., Aguilar, R.C., Paredes, F.: A new artificial bee colony algorithm for set covering problems. Electr. Eng. Inf. Technol. 63, 31 (2014)

    Article  Google Scholar 

  3. Crawford, B., Soto, R., Aguilar, R.C., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 2014, 1–8 (2014)

    Article  Google Scholar 

  4. Crawford, B., Soto, R., Monfroy, E.: Cultural algorithms for the set covering problem. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part II. LNCS, vol. 7929, pp. 27–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using Particle Swarm Optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)

    Article  Google Scholar 

  6. Crawford, B., Soto, R., Monfroy, E., Paredes, F., Palma, W.: A hybrid Ant algorithm for the set covering problem (2014)

    Google Scholar 

  7. Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A binary firefly algorithm for the set covering problem. Modern Trends Tech. Comput. Sci. 285, 65–73 (2014)

    Article  Google Scholar 

  8. Crawford, B., Soto, R., Riquelme-Leiva, M., Peña, C., Torres-Rojas, C., Johnson, F., Paredes, F.: Modified binary firefly algorithms with different transfer functions for solving set covering problems. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Prokopova, Z., Silhavy, P. (eds.) CSOC 2015. AISC, vol. 349, pp. 307–315. Springer, Cham (2015)

    Google Scholar 

  9. Crawford, B., Soto, R., Peña, C., Palma, W., Johnson, F., Paredes, F.: Solving the set covering problem with a shuffled frog leaping algorithm. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS, vol. 9012, pp. 41–50. Springer, Heidelberg (2015)

    Google Scholar 

  10. Michalewicz, Z.: Genetic Algorithms \(+\) Data Structures \(=\) Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  11. Azad, M.A.K., Rocha, A.M.A.C., Fernandes, E.M.G.P.: Solving multidimensional 0–1 knapsack problem with an artificial fish swarm algorithm. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 72–86. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Azad, M.A.K., Rocha, A.M.A., Fernandes, E.M.: Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems. Swarm Evol. Comput. 14, 66–75 (2014)

    Article  MATH  Google Scholar 

  13. Azad, M.A.K., Rocha, A.M.A., Fernandes, E.M.: Solving large 0–1 multidimensional knapsack problems by a new simplified binary artificial fish swarm algorithm. J. Math. Model. Algorithms Oper. Res. 14, 313–330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balas, E., Ho, A.: Set covering algorithms using cutting planes, heuristics, and subgradient optimization: a computational study. In: Padberg, M.W. (ed.) Combinatorial Optimization, pp. 37–60. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  15. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1), 85–93 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beasley, J.E.: A Lagrangian heuristic for set-covering problems. Naval Res. Logist. (NRL) 37(1), 151–164 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1140897. Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455. Sebastián Mansilla Villablanca, Álvaro Gómez, Adrián Jaramillo and Juan Salas are supported by Postgraduate Grant Pontificia Universidad Católica de Valparaíso 2016 (INF-PUCV 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Broderick Crawford .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Table 1. Experimental results of SCP benchmarks (4, 5, 6, A, B, C, D, E, NRE, NRF, NRG and NRH sets)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Crawford, B. et al. (2016). An Artificial Fish Swarm Optimization Algorithm to Solve Set Covering Problem. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42007-3_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42006-6

  • Online ISBN: 978-3-319-42007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics