A Story of Hilbert’s Tenth Problem | SpringerLink
Skip to main content

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 10))

  • 427 Accesses

Abstract

I tell a story about Martin Davis’s involvement with Hilbert’s tenth problem, including his attitude, motivations, and what were his main contributions. With respect to Yuri Matiyasevich , I emphasize the fundamental aspects of his work in number theory that produced the needed proof. In addition I provide a glimpse of the social, educational, and cultural environment that created the quality of person and mathematician he is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 20019
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The letters RDP (DPR) stand for Julia Robinson , Martin Davis, and Hilary Putnam .

  2. 2.

    That is, the broadcast frequency is first converted to an intermediate frequency before being amplified and detected.

  3. 3.

    Some of this information comes from [15].

References

  1. Davis, M., Putnam, J., & Robinson, J. (1961). The decision problem for exponential Diophante equations. Annals of Mathematics, 74, 425–436.

    Article  Google Scholar 

  2. Jones, J. P., & Matiyasevich, Y. V. (1984). Register machine proof of the theorem on exponential Diophantine representation of enumerable sets. The Journal of Symbolic Logic, 49(3), 818–829.

    Article  Google Scholar 

  3. Schöning, U., Pruim, R. J., & Pruim, R. (1998). Gems of theoretical computer science. Springer.

    Google Scholar 

  4. Davis, M. (1973). Hilbert’s tenth problem is unsolvable. American Mathematical Monthly, 80, 233–269. Reprinted in the Dover edition of [8].

    Google Scholar 

  5. Green, B., & Tao, T. (2008). The primes contain arbitrarily long arithmetic progressions. The Annals of Mathematics, 167(2), 481–547.

    Article  Google Scholar 

  6. Davis, M. (1953). Arithmetical problems and recursively enumerable predicates. The Journal of Symbolic Logic, 18, 33–41.

    Article  Google Scholar 

  7. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter SystemeI. Monatsch. Math. und Physik, 38, 173–198. English translations: (1) Gödel, K. (1962). On formally undecidable propositions of Principia Mathematica and related systems, Basic Books. (2) Davis, M. (Ed.). (1965). The undecidable (pp. 5–38). Raven Press. (3) Van Heijenoort, J. (Ed.). (1967). From Frege to Gödel (pp. 596–616). Harvard University press.

    Google Scholar 

  8. Davis, M. (1958). Computability and unsolvability. New York: McGraw Hill. Reprinted Dover 1982.

    Google Scholar 

  9. Robinson, J. (1952). Existential definability in arithmetic. Transactions of the American Mathematical Society, 72, 437–449.

    Article  Google Scholar 

  10. Davis, M., & Putnam, H. (1958). Reductions of Hilbert’s tenth problem. The Journal of Symbolic Logic, 23, 183–187.

    Article  Google Scholar 

  11. Davis, M., & Putnam, H. (1959). On Hilbert’s tenth problem, US Air Force O. S. R. Report AFOSR TR 59-124, Part III.

    Google Scholar 

  12. Robinson, J. (1969). Diophantine decision problems. In: LeVeque, W. J. (Ed.), Studies in number theory, MAA studies in mathematics (Vol. 6, pp. 76–116). Buffalo, N. Y: MAA.

    Google Scholar 

  13. Kreisel, G. (1962). Review of [1], Mathematical Reviews, 24, 573, Part A (review number A3061).

    Google Scholar 

  14. Yandell, B. H. (2002). The honors class. Natick, Massachusetts: A. K. Peters.

    Google Scholar 

  15. Matiyasevich, Y. V. (2006) Hilbert’s tenth problem: Diophantine equations in the twentieth century. In: A. A. Bolibruch, Yu. S. Osipov, & Ya. G. Sinai (Ed.), Mathematical events of the twentieth century (pp. 185–213). Berlin, PHASIS, Moscow: Springer.

    Google Scholar 

  16. Davis, M., Matiyasevich, Y. V., & Robinson, J. (1976). Hilbert’s tenth problem. Diophantine equations. Positive aspects of a negative solution. Proceedings of Symposia in Pure Mathematics, 28, 323–378.

    Article  Google Scholar 

  17. Matiyasevich, Y. V. (1980). A new proof of the theorem on exponential Diophantine representation of enumerable sets. English translation, Journal of Soviet Mathematics, 14, 1475–1486.

    Google Scholar 

  18. Davis, M., & Hersh, R. (1973). Hilbert’s tenth problem. Scientific American, 229, 84–91.

    Article  Google Scholar 

  19. Matiyasevich, Y. V. (1993). Hilbert’s tenth problem, MIT Press. This work was originally published in Russian by Nauka Publishers, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Elena Morales Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morales Guerrero, L.E. (2016). A Story of Hilbert’s Tenth Problem. In: Omodeo, E., Policriti, A. (eds) Martin Davis on Computability, Computational Logic, and Mathematical Foundations. Outstanding Contributions to Logic, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-41842-1_4

Download citation

Publish with us

Policies and ethics