Head-Pose Estimation In-the-Wild Using a Random Forest | SpringerLink
Skip to main content

Head-Pose Estimation In-the-Wild Using a Random Forest

  • Conference paper
  • First Online:
Articulated Motion and Deformable Objects (AMDO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9756))

Included in the following conference series:

Abstract

Human head-pose estimation has attracted a lot of interest because it is the first step of most face analysis tasks. However, many of the existing approaches address this problem in laboratory conditions. In this paper, we present a real-time algorithm that estimates the head-pose from unrestricted 2D gray-scale images. We propose a classification scheme, based on a Random Forest, where patches extracted randomly from the image cast votes for the corresponding discrete head-pose angle. In the experiments, the algorithm performs similar and better than the state-of-the-art in controlled and in-the-wild databases respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ba, S.O., Odobez, J.M.: Multiperson visual focus of attention from head pose and meeting contextual cues. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 101–116 (2011)

    Article  Google Scholar 

  2. Balasubramanian, V., Ye, J., Panchanathan, S.: Biased manifold embedding: a framework for person-independent head pose estimation (2007)

    Google Scholar 

  3. BenAbdelkader, C.: Robust head pose estimation using supervised manifold learning. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 518–531. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Tech. Rep. MSR-TR-2011-114, Microsoft Research (2011)

    Google Scholar 

  6. Dantone, M., Gall, J., Fanelli, G., Gool, L.V.: Real-time facial feature detection using conditional regression forests. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  7. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proceedings on British Machine Vision Conference (BMVC) (2009)

    Google Scholar 

  8. Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013)

    Article  Google Scholar 

  9. Gaschler, A., Jentzsch, S., Giuliani, M., Huth, K., de Ruiter, J., Knoll, A.: Social behavior recognition using body posture and head pose for human-robot interaction. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2012)

    Google Scholar 

  10. Geng, X., Xia, Y.: Head pose estimation based on multivariate label distribution. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  11. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE (2008)

    Google Scholar 

  12. Haj, M.A., González, J., Davis, L.S.: On partial least squares in head pose estimation: how to simultaneously deal with misalignment. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  13. Hara, K., Chellappa, R.: Growing regression forests by classification: applications to object pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 552–567. Springer, Heidelberg (2014)

    Google Scholar 

  14. Marín-Jiménez, M.J., Ferrari, V., Zisserman, A.: Here’s looking at you, kid: detecting people looking at each other in videos. In: Proceedings on British Machine Vision Conference (BMVC) (2011)

    Google Scholar 

  15. Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 607–626 (2009)

    Article  Google Scholar 

  16. Stiefelhagen, R.: Estimating head pose with neural networks. In: Proceedings of International Conference on Pattern Recognition Workshops (ICPRW) (2004)

    Google Scholar 

  17. Subramanian, R., Yan, R.Y., Staiano, J., Lanz, O., Sebe, N.: On the relationship between head pose, social attention and personality prediction for unstructured and dynamic group interactions. In: Proceedings of International Conference on Multimodal Interaction (2013)

    Google Scholar 

  18. Sundararajan, K., Woodard, D.L.: Head pose estimation in the wild using approximate view manifolds. In: Proceedings of Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015)

    Google Scholar 

  19. Valenti, R., Sebe, N., Gevers, T.: Combining head pose and eye location information for gaze estimation. IEEE Trans. Image Process. 21(2), 802–815 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wu, J., Trivedi, M.M.: A two-stage head pose estimation framework and evaluation. Pattern Recognit. 41(3), 1138–1158 (2008)

    Article  MATH  Google Scholar 

  21. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness under project SPACES-UPM (TIN2013-47630-C2-2R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Valle, R., Buenaposada, J.M., Valdés, A., Baumela, L. (2016). Head-Pose Estimation In-the-Wild Using a Random Forest. In: Perales, F., Kittler, J. (eds) Articulated Motion and Deformable Objects. AMDO 2016. Lecture Notes in Computer Science(), vol 9756. Springer, Cham. https://doi.org/10.1007/978-3-319-41778-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41778-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41777-6

  • Online ISBN: 978-3-319-41778-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics