Abstract
Due to the importance of security in society, monitoring activities and recognizing specific people through surveillance video cameras play an important role. One of the main issues in such activity arises from the fact that cameras do not meet the resolution requirement for many face recognition algorithms. In order to solve this issue, in this paper we are proposing a new system which super resolves the image using deep learning convolutional network followed by the Hidden Markov Model and Singular Value Decomposition based face recognition. The proposed system has been tested on many well-known face databases such as FERET, HeadPose, and Essex University databases as well as our recently introduced iCV Face Recognition database (iCV-F). The experimental results show that the recognition rate is improving considerably after apply the super resolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012)
Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1059–1066. IEEE (2013)
Peleg, T., Elad, M.: A statistical prediction model based on sparse representations for single image super-resolution. IEEE Trans. Image Process. 23(6), 2569–2582 (2014)
Rasti, P., Demirel, H., Anbarjafari, G.: Image resolution enhancement by using interpolation followed by iterative back projection. In: 2013 21st Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2013)
Rasti, P., Lusi, I., Sahakyan, A., Traumann, A., Bolotnikova, A., Daneshmand, M., Kiefer, R., Aabloo, A., Anbarjafar, G., Demirel, H., et al.: Modified back projection kernel based image super resolution. In: 2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), pp. 161–165. IEEE (2014)
Wang, L., Xiang, S., Meng, G., Wu, H., Pan, C.: Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1289–1299 (2013)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)
Turk, M., Pentland, A.P., et al.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1991), Proceedings, pp. 586–591 (1991)
Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: 1994 Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1994), Proceedings, pp. 84–91. IEEE (1994)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Zhao, W., Chellappa, R., Nandhakumar, N.: Empirical performance analysis of linear discriminant classifiers. In: 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, pp. 164–169. IEEE (1998)
Demirel, H., Anbarjafari, G.: Data fusion boosted face recognition based on probability distribution functions in different colour channels. EURASIP J. Adv. Signal Process. 2009, 25 (2009)
Miar-Naimi, H., Davari, P.: A new fast and efficient HMM-based face recognition system using a 7-state HMM along with SVD coefficients (2008)
Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142. IEEE (1994)
Kohir, V.V., Desai, U.B.: Face recognition using a DCT-HMM approach. In: Fourth IEEE Workshop on Applications of Computer Vision (WACV 1998), Proceedings, pp. 226–231. IEEE (1998)
Samaria, F.S.: Face recognition using hidden markov models, Ph.D. dissertation, University of Cambridge (1994)
Eickeler, S., Müller, S., Rigoll, G.: Recognition of JPEG compressed face images based on statistical methods. Image Vis. Comput. 18(4), 279–287 (2000)
Anand, C., Lawrance, R.: Algorithm for face recognition using HMM and SVD coefficients. Artif. Intell. Syst. Mach. Learn. 5(3), 125–130 (2013)
Bicego, M., Castellani, U., Murino, V.: Using hidden markov models and wavelets for face recognition. In: 12th International Conference on Image Analysis and Processing, Proceedings, pp. 52–56. IEEE (2003)
Bobulski, J.: 2DHMM-based face recognition method. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. Advances in Intelligent Systems and Computing, vol. 389, pp. 11–18. Springer, Heidelberg (2016)
Klema, V.C., Laub, A.J.: The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)
Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Super-resolved faces for improved face recognition from surveillance video. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1–10. Springer, Heidelberg (2007)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.J., et al.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Collection of facial images Faces94. http://cswww.essex.ac.uk/mv/allfaces/faces94.html
Head pose image database. http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html
Collection of facial images. http://icv.tuit.ut.ee/databases.html
Acknowledgment
This work is supported Estonian Research Council Grant (PUT638) and the Spanish Project TIN2013-43478-P.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Rasti, P., Uiboupin, T., Escalera, S., Anbarjafari, G. (2016). Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring. In: Perales, F., Kittler, J. (eds) Articulated Motion and Deformable Objects. AMDO 2016. Lecture Notes in Computer Science(), vol 9756. Springer, Cham. https://doi.org/10.1007/978-3-319-41778-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-41778-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41777-6
Online ISBN: 978-3-319-41778-3
eBook Packages: Computer ScienceComputer Science (R0)