Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring | SpringerLink
Skip to main content

Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring

  • Conference paper
  • First Online:
Articulated Motion and Deformable Objects (AMDO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9756))

Included in the following conference series:

Abstract

Due to the importance of security in society, monitoring activities and recognizing specific people through surveillance video cameras play an important role. One of the main issues in such activity arises from the fact that cameras do not meet the resolution requirement for many face recognition algorithms. In order to solve this issue, in this paper we are proposing a new system which super resolves the image using deep learning convolutional network followed by the Hidden Markov Model and Singular Value Decomposition based face recognition. The proposed system has been tested on many well-known face databases such as FERET, HeadPose, and Essex University databases as well as our recently introduced iCV Face Recognition database (iCV-F). The experimental results show that the recognition rate is improving considerably after apply the super resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  2. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2011. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1059–1066. IEEE (2013)

    Google Scholar 

  4. Peleg, T., Elad, M.: A statistical prediction model based on sparse representations for single image super-resolution. IEEE Trans. Image Process. 23(6), 2569–2582 (2014)

    Article  MathSciNet  Google Scholar 

  5. Rasti, P., Demirel, H., Anbarjafari, G.: Image resolution enhancement by using interpolation followed by iterative back projection. In: 2013 21st Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2013)

    Google Scholar 

  6. Rasti, P., Lusi, I., Sahakyan, A., Traumann, A., Bolotnikova, A., Daneshmand, M., Kiefer, R., Aabloo, A., Anbarjafar, G., Demirel, H., et al.: Modified back projection kernel based image super resolution. In: 2014 2nd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), pp. 161–165. IEEE (2014)

    Google Scholar 

  7. Wang, L., Xiang, S., Meng, G., Wu, H., Pan, C.: Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1289–1299 (2013)

    Article  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  9. Turk, M., Pentland, A.P., et al.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1991), Proceedings, pp. 586–591 (1991)

    Google Scholar 

  10. Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: 1994 Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1994), Proceedings, pp. 84–91. IEEE (1994)

    Google Scholar 

  11. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  12. Zhao, W., Chellappa, R., Nandhakumar, N.: Empirical performance analysis of linear discriminant classifiers. In: 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings, pp. 164–169. IEEE (1998)

    Google Scholar 

  13. Demirel, H., Anbarjafari, G.: Data fusion boosted face recognition based on probability distribution functions in different colour channels. EURASIP J. Adv. Signal Process. 2009, 25 (2009)

    Article  MATH  Google Scholar 

  14. Miar-Naimi, H., Davari, P.: A new fast and efficient HMM-based face recognition system using a 7-state HMM along with SVD coefficients (2008)

    Google Scholar 

  15. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142. IEEE (1994)

    Google Scholar 

  16. Kohir, V.V., Desai, U.B.: Face recognition using a DCT-HMM approach. In: Fourth IEEE Workshop on Applications of Computer Vision (WACV 1998), Proceedings, pp. 226–231. IEEE (1998)

    Google Scholar 

  17. Samaria, F.S.: Face recognition using hidden markov models, Ph.D. dissertation, University of Cambridge (1994)

    Google Scholar 

  18. Eickeler, S., Müller, S., Rigoll, G.: Recognition of JPEG compressed face images based on statistical methods. Image Vis. Comput. 18(4), 279–287 (2000)

    Article  Google Scholar 

  19. Anand, C., Lawrance, R.: Algorithm for face recognition using HMM and SVD coefficients. Artif. Intell. Syst. Mach. Learn. 5(3), 125–130 (2013)

    Google Scholar 

  20. Bicego, M., Castellani, U., Murino, V.: Using hidden markov models and wavelets for face recognition. In: 12th International Conference on Image Analysis and Processing, Proceedings, pp. 52–56. IEEE (2003)

    Google Scholar 

  21. Bobulski, J.: 2DHMM-based face recognition method. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. Advances in Intelligent Systems and Computing, vol. 389, pp. 11–18. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  22. Klema, V.C., Laub, A.J.: The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Super-resolved faces for improved face recognition from surveillance video. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 1–10. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  25. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  26. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  27. Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.J., et al.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  28. Collection of facial images Faces94. http://cswww.essex.ac.uk/mv/allfaces/faces94.html

  29. Head pose image database. http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html

  30. Collection of facial images. http://icv.tuit.ut.ee/databases.html

Download references

Acknowledgment

This work is supported Estonian Research Council Grant (PUT638) and the Spanish Project TIN2013-43478-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Rasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rasti, P., Uiboupin, T., Escalera, S., Anbarjafari, G. (2016). Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring. In: Perales, F., Kittler, J. (eds) Articulated Motion and Deformable Objects. AMDO 2016. Lecture Notes in Computer Science(), vol 9756. Springer, Cham. https://doi.org/10.1007/978-3-319-41778-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41778-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41777-6

  • Online ISBN: 978-3-319-41778-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics