Localized Verlet Integration Framework for Facial Models | SpringerLink
Skip to main content

Localized Verlet Integration Framework for Facial Models

  • Conference paper
  • First Online:
Articulated Motion and Deformable Objects (AMDO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9756))

Included in the following conference series:

Abstract

Traditional Verlet integration frameworks have been successful with their robustness and efficiency to simulate deformable bodies ranging from simple cloth to geometrically complex solids. However, the existing frameworks deform the models as a whole. We present a Verlet integration framework which provides local surface deformation on the selected area of the mesh without giving any global deformation impact to the whole model. The framework is specifically designed for facial surfaces of the cartoon characters in computer animation. Our framework provides an interactive selection of the deformation influence area by using geodesic distance computation based on heat kernel. Additionally, the framework exploits the geometric constraints for stretching, shearing and bending to handle the environmental interactions such as collision. The proposed framework is robust and easy to implement since it is based on highly accurate geodesic distance computation and solving the projected geometric constraints. We demonstrate the benefits of our framework with the results obtained from various facial models to present its potential in terms of practicability and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bender, J., Koschier, D., Charrier, P., Weber, D.: Position-based simulation of continuous materials. Comput. Graph. 44, 1–10 (2014)

    Article  Google Scholar 

  2. Bender, J., Müller, M., Macklin, M.: Position-based simulation methods in computer graphics. In: EUROGRAPHICS 2015 Tutorials (2015)

    Google Scholar 

  3. Bender, J., Müller, M., Otaduy, M.A., Teschner, M.: Position-based methods for the simulation of solid objects in computer graphics. In: EUROGRAPHICS 2013 State of the Art Reports (2013)

    Google Scholar 

  4. Bergou, M., Mathur, S., Wardetzky, M., Grinspun, E.: Tracks: toward directable thin shells. ACM Trans. Graph. 26(3), 50:1–50:10 (2007)

    Article  Google Scholar 

  5. Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2003)

    Google Scholar 

  6. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32(5), 152:1–152:11 (2013)

    Article  Google Scholar 

  7. Deul, C., Bender, J.: Physically-based character skinning. In: Virtual Reality Interactions and Physical Simulations (VRIPhys) (2013)

    Google Scholar 

  8. Deul, C., Charrier, P., Bender, J.: Position-based rigid body dynamics. In: Computer Animation and Virtual Worlds (2014)

    Google Scholar 

  9. von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. 25(3), 1118–1125 (2006)

    Article  MATH  Google Scholar 

  10. Jakobsen, T.: Advanced character physics. In: Proceedings of the Game Developers Conference, pp. 383–401 (2001)

    Google Scholar 

  11. Kubiak, B., Pietroni, N., Ganovelli, F., Fratarcangeli, M.: A robust method for real-time thread simulation. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, pp. 85–88 (2007)

    Google Scholar 

  12. Müller, M.: Hierarchical position based dynamics. In: Workshop in Virtual Reality Interactions and Physical Simulation “VRIPHYS” (2008)

    Google Scholar 

  13. Müller, M., Chentanez, N.: Wrinkle meshes. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 85–92 (2010)

    Google Scholar 

  14. Müller, M., Chentanez, N.: Solid simulation with oriented particles. ACM Trans. Graph. 30(4), 1–9 (2011)

    Article  Google Scholar 

  15. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)

    Article  Google Scholar 

  16. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2006)

    Article  Google Scholar 

  17. Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface, pp. 147–154 (1996)

    Google Scholar 

  18. Stam, J.: Nucleus: Towards a unified dynamics solver for computer graphics. In: 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2009, pp. 1–11 (2009)

    Google Scholar 

  19. Stumpp, T., Spillmann, J., Becker, M., Teschner, M.: A geometric deformation model for stable cloth simulation. In: Workshop on Virtual Reality Interactions and Physical Simulation “VRIPHYS” (2008)

    Google Scholar 

  20. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)

    Article  Google Scholar 

  21. Witkin, A., Baraff, D.: Physically based modeling: Principles and practice. In: ACM Siggraph 1997 Course notes (1997)

    Google Scholar 

Download references

Acknowledgments

This work is funded by Fundação para a Ciência e Tecnologia/FCT (SFRH/BD/82477/2011), POPH/FSE program, and is a result of the project NanoSTIMA Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics, NORTE-01-0145-FEDER-000016, supported by Norte Portugal Regional Operational Programme (NORTE 2020), through Portugal 2020 and the European Regional Development Fund. We thank Xenxo Alvarez and Hiroki Itokazu for the models, Thomas Neumann and Timm Wagener for sharing their research material online. We also thank José Serra and Pedro Mendes for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Cetinaslan .

Editor information

Editors and Affiliations

Appendix: Constraint Derivations

Appendix: Constraint Derivations

The constraint function for stretching from Eq. 8 is \(C_1(q_{i,j}) = |D| - l_{ij}\) where \(D = |q_j - q_i|\). The corresponding gradients are \(\nabla _{q_i} C = -n\) and \(\nabla _{q_j} C = n\) where \(n = \frac{q_j - q_i}{|q_j - q_i|}\). After substituting the gradients to Eq. 7, the Lagrange multiplier becomes \(\lambda = \frac{|q_j - q_i|-l}{|w_j + w_i|}\) where \(w_i = w_j = 1\), and from [15] the final corrections are:

$$\begin{aligned} \varDelta q_i = -\frac{1}{2}(|q_j - q_i|-l)(\frac{q_j - q_i}{|q_j - q_i|}) \end{aligned}$$
(14)
$$\begin{aligned} \varDelta q_j = +\frac{1}{2}(|q_j - q_i|-l)(\frac{q_j - q_i}{|q_j - q_i|}) \end{aligned}$$
(15)

The constraint function for shearing from Eq. 9 is defined as \(C(q_{i,j,k}) = cos^{-1}(D) - \gamma _{ijk}\), where \(D = M_{ij} \cdot M_{ik}\) from Eq. 11. With \(\frac{d}{dx} cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}}\), the corresponding gradients are obtained as follows:

$$\begin{aligned} \nabla _{q_i} C = -\frac{1}{\sqrt{1-D^2}} (\frac{\partial M_{ij}}{\partial q_i} \cdot M_{ik} + M_{ij} \cdot \frac{\partial M_{ik}}{\partial q_i}) \end{aligned}$$
(16)
$$\begin{aligned} \nabla _{q_j} C = -\frac{1}{\sqrt{1-D^2}} (\frac{\partial M_{ij}}{\partial q_j} \cdot M_{ik} + M_{ij} \cdot \frac{\partial M_{ik}}{\partial q_j}) \end{aligned}$$
(17)
$$\begin{aligned} \nabla _{q_k} C = -\frac{1}{\sqrt{1-D^2}} (\frac{\partial M_{ij}}{\partial q_k} \cdot M_{ik} + M_{ij} \cdot \frac{\partial M_{ik}}{\partial q_k}) \end{aligned}$$
(18)

After substituting the gradients to Eq. 7, the Lagrange multiplier becomes:

$$\begin{aligned} \lambda = -\frac{cos^{-1}(M_{ij} \cdot M_{ik}) - \gamma _{ijk}}{|\nabla _{q_i} C|^2 + |\nabla _{q_j} C|^2 + |\nabla _{q_k} C|^2} \end{aligned}$$
(19)

where \(w_i = w_j = w_k = 1\). The corrections can be computed easily for the shearing constraint by substituting the gradients and Lagrange multiplier in Eq. 6. We use a middle step to demonstrate the calculations:

figure b

The general final correction for shearing constraint is:

$$\begin{aligned} \varDelta q_{i,j,k} = -\frac{(\sqrt{1-D^2})(cos^{-1}(D) - \gamma _{ijk})}{|r_1|^2 + |r_2|^2 + |r_3|^2} r_{1,2,3} \end{aligned}$$
(20)

The constraint function for bending from Eq. 10 is defined as \(C(q_{i,j,k,l}) = cos^{-1}(D) - \theta _{ijkl}\), where \(D = N_{ijk} \cdot N_{ijl}\) from Eq. 12. According to [15] \(q_i\) is set to 0 (\(q_i = 0\)), with \(\frac{d}{dx} cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}}\), the corresponding gradients are obtained as follows:

$$\begin{aligned} \nabla _{q_i} C = -\nabla _{q_j} C - \nabla _{q_k} C - \nabla _{q_l} C \end{aligned}$$
(21)
$$\begin{aligned} \nabla _{q_j} C = -\frac{1}{\sqrt{1-D^2}} ((\frac{\partial N_{ijk}}{\partial q_j})^T N_{ijl} + (\frac{\partial N_{ijl}}{\partial q_j})^T N_{ijk}) \end{aligned}$$
(22)
$$\begin{aligned} \nabla _{q_k} C = -\frac{1}{\sqrt{1-D^2}} ((\frac{\partial N_{ijk}}{\partial q_k})^T N_{ijl}) \end{aligned}$$
(23)
$$\begin{aligned} \nabla _{q_l} C = -\frac{1}{\sqrt{1-D^2}} ((\frac{\partial N_{ijl}}{\partial q_l})^T N_{ijk}) \end{aligned}$$
(24)

After substituting the gradients to Eq. 7, the Lagrange multiplier becomes:

$$\begin{aligned} \lambda = -\frac{cos^{-1}(N_{ijk} \cdot N_{ijl}) - \theta _{ijkl}}{|\nabla _{q_i} C|^2 + |\nabla _{q_j} C|^2 + |\nabla _{q_k} C|^2 + |\nabla _{q_l} C|^2} \end{aligned}$$
(25)

where \(w_i = w_j = w_k = w_l = 1\). By following the form mentioned in [15], as a middle step, we take advantage of the following computations before finding the final corrections:

$$\begin{aligned} r_1 = -r_2 - r_3 - r_4 \end{aligned}$$
(26)
$$\begin{aligned} r_2 = -\frac{q_k \times N_{ijl} + (N_{ijk} \times q_k)D}{|q_j \times q_k|} - \frac{q_l \times N_{ijk} + (N_{ijl} \times q_l)D}{|q_j \times q_l|} \end{aligned}$$
(27)
$$\begin{aligned} r_3 = \frac{q_j \times N_{ijl} + (N_{ijk} \times q_j)D}{|q_j \times q_k|} \end{aligned}$$
(28)
$$\begin{aligned} r_4 = \frac{q_j \times N_{ijk} + (N_{ijl} \times q_j)D}{|q_j \times q_l|} \end{aligned}$$
(29)

The general final correction for bending constraint is:

$$\begin{aligned} \varDelta q_{i,j,k,l} = -\frac{(\sqrt{1-D^2})(cos^{-1}(D) - \theta _{ijkl})}{|r_1|^2 + |r_2|^2 + |r_3|^2 + |r_4|^2} r_{1,2,3,4} \end{aligned}$$
(30)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cetinaslan, O., Orvalho, V. (2016). Localized Verlet Integration Framework for Facial Models. In: Perales, F., Kittler, J. (eds) Articulated Motion and Deformable Objects. AMDO 2016. Lecture Notes in Computer Science(), vol 9756. Springer, Cham. https://doi.org/10.1007/978-3-319-41778-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41778-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41777-6

  • Online ISBN: 978-3-319-41778-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics