Correlation Clustering by Contraction, a More Effective Method | SpringerLink
Skip to main content

Correlation Clustering by Contraction, a More Effective Method

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 655))

Abstract

In this article we propose two effective methods to produce a near optimal solution for the problem of correlation clustering. We study their properties at different circumstances, and show that the inner structure generated by a tolerance relation has effect on the accuracy of the methods. Finally, we show that there is no royal road to the sequence of clusterings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aszalós, L., Bakó, M.: Advanced search methods (in Hungarian) (2012). http://morse.inf.unideb.hu/~aszalos/diak/fka

  2. Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 315–324. Springer, Berlin (2013). doi:10.1109/TKDE.2007.1061

    Chapter  Google Scholar 

  3. Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. Rough Sets and Knowledge Technology, pp. 399–410. Springer, Berlin (2014). doi:10.1007/978-3-319-11740-9_37

    Google Scholar 

  4. Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems, FedCSIS 2015, Lódz, Poland, 13–16 September 2015, pp. 425–434. IEEE (2015). doi:10.15439/2015F137

  5. Aszalós, L., Mihálydeák, T.: Rough classification in incomplete databases by correlation clustering. In: Alonso, J.M., Bustince, H., Reformat, M. (eds.) Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), Gijón, Spain, 30 June 2015. Atlantis Press (2015)

    Google Scholar 

  6. Aszalós, L., Kormos, J., Nagy, D.: Conjectures on phase transition at correlation clustering of random graphs. Ann. Univ. Sci. Bp. Sect. Comput. 42, 37–54 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004). doi:10.1023/B:MACH.0000033116.57574.95

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhattacharya, A., De, R.K.: Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics 24(11), 1359–1366 (2008). doi:10.1093/bioinformatics/btn133

    Article  Google Scholar 

  9. Chen, Z., Yang, S., Li, L., Xie, Z.: A clustering approximation mechanism based on data spatial correlation in wireless sensor networks. Wireless Telecommunications Symposium (WTS), pp. 1–7. IEEE (2010). doi:10.1109/WTS.2010.5479626

  10. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. BioSystems 43(2), 73–81 (1997)

    Article  Google Scholar 

  11. DuBois, T., Golbeck, J., Kleint, J., Srinivasan, A.: Improving recommendation accuracy by clustering social networks with trust. Recomm. Syst. Soc. Web 532, 1–8 (2009). doi:10.1145/2661829.2662085

    Google Scholar 

  12. Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng. Optim. 38(03), 259–277 (2006)

    Article  Google Scholar 

  13. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: Advances in Neural Information Processing Systems, pp. 1530–1538 (2011)

    Google Scholar 

  14. Néda, Z., Florian, R., Ravasz, M., Libál, A., Györgyi, G.: Phase transition in an optimal clusterization model. Phys. A: Stat. Mech. Appl. 362(2), 357–368 (2006). doi:10.1016/j.physa.2005.08.008

    Article  Google Scholar 

  15. Néda, Z., Sumi, R., Ercsey-Ravasz, M., Varga, M., Molnár, B., Cseh, G.: Correlation clustering on networks. J. Phys. A: Math. Theor. 42(34), 345003 (2009)

    Google Scholar 

  16. Yang, B., Cheung, W.K., Liu, J.: Community mining from signed social networks. IEEE Trans. Knowl. Data Eng. 19(10), 1333–1348 (2007)

    Article  Google Scholar 

  17. Zahn Jr., C.: Approximating symmetric relations by equivalence relations. J. Soc. Ind. Appl. Math. 12(4), 840–847 (1964). doi:10.1137/0112071

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Aszalós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aszalós, L., Mihálydeák, T. (2016). Correlation Clustering by Contraction, a More Effective Method. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 655. Springer, Cham. https://doi.org/10.1007/978-3-319-40132-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40132-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40131-7

  • Online ISBN: 978-3-319-40132-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics