Abstract
This paper proposes a new image descriptor based on color spatial distribution for image similarity comparison. It is similar to methods based on HOG and spatial pyramid but in contrast to them operates on colors and color directions instead of oriented gradients. The presented method assumes using two types of descriptors. The first one is used to describe segments of similar color and the second sub-descriptor describes connections between different adjacent segments. By this means we gain the ability to describe image parts in a more complex way as is in the case of the histogram of oriented gradients (HOG) algorithm but more general as is in the case of keypoint-based methods such as SURF or SIFT. Moreover, in comparison to the keypoint-based methods, the proposed descriptor is less memory demanding and needs only a single step of image data processing. Descriptor comparing is more complicated but allows for descriptor ordering and for avoiding some unnecessary comparison operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)
Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM (2007)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Drozda, P., Grecki, P., Sopyla, K., Artiemjew, P.: Visual words sequence alignment for image classification. In: ICCI*CC, pp. 397–402. IEEE (2013)
Gunn, S.R.: On the discrete representation of the Laplacian of Gaussian. Pattern Recogn. 32(8), 1463–1472 (1999)
Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)
Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of Japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)
Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)
Nowak, T., Najgebauer, P., Romanowski, J., Gabryel, M., Korytkowski, M., Scherer, R., Kostadinov, D.: Spatial keypoint representation for visual object retrieval. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 639–650. Springer, Heidelberg (2014)
Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 65–73. ACM (1997)
Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70 (2015)
Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)
Sopyła, K., Drozda, P., Górecki, P.: SVM with CUDA accelerated kernels for big sparse problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 439–447. Springer, Heidelberg (2012)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801. IEEE (2009)
Young, R.A.: The gaussian derivative model for spatial vision: I. Retinal mechanisms. Spat. Vis. 2(4), 273–293 (1987)
Acknowledgements
This work was supported by the Polish National Science Centre (NCN) within project number DEC-2011/01/D/ST6/06957.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Najgebauer, P., Korytkowski, M., Barranco, C.D., Scherer, R. (2016). Novel Image Descriptor Based on Color Spatial Distribution. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_63
Download citation
DOI: https://doi.org/10.1007/978-3-319-39384-1_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39383-4
Online ISBN: 978-3-319-39384-1
eBook Packages: Computer ScienceComputer Science (R0)