Novel Image Descriptor Based on Color Spatial Distribution | SpringerLink
Skip to main content

Novel Image Descriptor Based on Color Spatial Distribution

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Included in the following conference series:

Abstract

This paper proposes a new image descriptor based on color spatial distribution for image similarity comparison. It is similar to methods based on HOG and spatial pyramid but in contrast to them operates on colors and color directions instead of oriented gradients. The presented method assumes using two types of descriptors. The first one is used to describe segments of similar color and the second sub-descriptor describes connections between different adjacent segments. By this means we gain the ability to describe image parts in a more complex way as is in the case of the histogram of oriented gradients (HOG) algorithm but more general as is in the case of keypoint-based methods such as SURF or SIFT. Moreover, in comparison to the keypoint-based methods, the proposed descriptor is less memory demanding and needs only a single step of image data processing. Descriptor comparing is more complicated but allows for descriptor ordering and for avoiding some unnecessary comparison operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)

    Article  Google Scholar 

  2. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM (2007)

    Google Scholar 

  5. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  7. Drozda, P., Grecki, P., Sopyla, K., Artiemjew, P.: Visual words sequence alignment for image classification. In: ICCI*CC, pp. 397–402. IEEE (2013)

    Google Scholar 

  8. Gunn, S.R.: On the discrete representation of the Laplacian of Gaussian. Pattern Recogn. 32(8), 1463–1472 (1999)

    Article  Google Scholar 

  9. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  10. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  11. Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of Japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)

    Article  Google Scholar 

  12. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31(13), 3812–3814 (2003)

    Article  Google Scholar 

  13. Nowak, T., Najgebauer, P., Romanowski, J., Gabryel, M., Korytkowski, M., Scherer, R., Kostadinov, D.: Spatial keypoint representation for visual object retrieval. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 639–650. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 65–73. ACM (1997)

    Google Scholar 

  15. Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70 (2015)

    Article  Google Scholar 

  16. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  18. Sopyła, K., Drozda, P., Górecki, P.: SVM with CUDA accelerated kernels for big sparse problems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 439–447. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1794–1801. IEEE (2009)

    Google Scholar 

  20. Young, R.A.: The gaussian derivative model for spatial vision: I. Retinal mechanisms. Spat. Vis. 2(4), 273–293 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Centre (NCN) within project number DEC-2011/01/D/ST6/06957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Najgebauer, P., Korytkowski, M., Barranco, C.D., Scherer, R. (2016). Novel Image Descriptor Based on Color Spatial Distribution. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics