Evolutionary Multiobjective Optimization of Liquid Fossil Fuel Reserves Exploitation with Minimizing Natural Environment Contamination | SpringerLink
Skip to main content

Evolutionary Multiobjective Optimization of Liquid Fossil Fuel Reserves Exploitation with Minimizing Natural Environment Contamination

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Included in the following conference series:

Abstract

One of exploitation methods of liquid fossil fuel deposits depends on pumping chemicals to the geological formation and ‘sucking out’ the fuel that is pushed out by the solution. This method became particularly popular in the case of extraction of shale gases. A real problem here is however a natural environment contamination caused mainly by chemicals soaking through the geological formations to ground-waters.

The process of pumping the chemical fluid into the formation and extracting the oil/gas is modeled here as a non-stationary flow of the non-linear fluid in heterogeneous media.

The (poly)optimization problem of extracting oil in such a process is then defined as a multiobjetcive optimization problem with two contradictory objectives: maximizing the amount of the oil/gas extracted and minimizing the contamination of the ground-waters.

To solve the problem defined a hibridized solver of multiobjective optimization of liquid fossil fuel extraction (LFFEP) integrating population-based heuristic (i.e. NSGA-II algorithm for approaching the Pareto frontier) with isogeometric finite element method IGA-FEM method for modeling non-stationary flow of the non-linear fluid in heterogeneous media is presented along with some preliminary experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, New York (2008)

    MATH  Google Scholar 

  2. Abraham, A., Jain, L.C., Goldberg, R.: Evolutionary Multiobjective Optimization Theoretical Advances and Applications. Springer, London (2005)

    Book  MATH  Google Scholar 

  3. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wachspress, E.L., Habetler, G.: An alternating-direction-implicit iteration technique. J. Soc. Ind. Appl. Math. 8, 403423 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birkhoff, G., Varga, R.S., Young, D.: Alternating direction implicit methods. Adv. Comput. 3, 189273 (1962)

    MathSciNet  MATH  Google Scholar 

  7. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, L., Calo, V.M.: Fast isogeometric solvers for explicit dynamics. Comput. Methods Appl. Mech. Eng. 274(1), 19–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, L., Calo, V.M.: Preconditioners based on the alternating-direction-implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients. J. Comput. Appl. Math. 273(1), 274–295 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alotaibi, M., Calo, V.M., Efendiev, Y., Galvis, J., Ghommem, M.: Global-local nonlinear model reduction for flows in heterogeneous porous media. Comput. Methods Appl. Mech. Eng. 292(1), 122–137 (2015)

    Article  MathSciNet  Google Scholar 

  12. Łoś, M., Woźniak, M., Paszyński, M., Dalcin, L., Calo, V.M.: Dynamics with matrices possesing Kronecker product structure. Procedia Comput. Sci. 51, 286–295 (2015)

    Article  Google Scholar 

  13. Woźniak, M., Los, M., Paszyński, M., Dalcin, L., Calo, V.M.: Parallel fast isogeometric solvers for explicit dynamic, accepted to Computing and Informatics (2015)

    Google Scholar 

  14. SLATEC Common Mathematical Library (1993). http://www.netlib.org/slatec/

  15. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Rupp, K., Smith, B.F., Zhang, H.: PETSc (2014). http://www.mcs.anl.gov/petsc

  16. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal Multi-Objective Optimization Framework. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO Companion (2015)

    Google Scholar 

  17. Byrski, A., Drezewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-agent systems, The Knowledge Engineering Review (2015)

    Google Scholar 

  18. Dreżewski, R., Siwik, L.: A review of agent-based Co-Evolutionary algorithms for multi-objective optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Optimization. ALO, vol. 7, pp. 177–209. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO 2014. ACM (2014)

    Google Scholar 

  20. Ciepiela, E., Kocot, J., Siwik, L., Drezewski, R.: Hierarchical approach to evolutionary. In: International Conference on Computational Science, Krakow (2008)

    Google Scholar 

  21. Drezewski, R., Siwik, L.: Co-evolutionary multi-agent system with sexual selection mechanism for multi-objective optimization. In: Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2006). IEEE (2006)

    Google Scholar 

  22. Drezewski, R., Siwik, L.: Multi-objective optimization using co-evolutionary multi-agent system with host-parasite mechanism. In: International Conference on Computational Science, Reading (2006)

    Google Scholar 

  23. Drezewski, R., Siwik, L.: Co-evolutionary multi-agent system with predator-prey mechanism for multi-objective optimization. In: International Conference on Adaptive and Natural Computing Algorithms, Warsaw (2007)

    Google Scholar 

Download references

Acknowledgments

The research presented in this paper was partially supported by the AGH University of Science and Technology Statutory Fund no. 11.11.230.124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Siwik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Siwik, L., Los, M., Kisiel-Dorohinicki, M., Byrski, A. (2016). Evolutionary Multiobjective Optimization of Liquid Fossil Fuel Reserves Exploitation with Minimizing Natural Environment Contamination. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics