Better Partitions of Protein Graphs for Subsystem Quantum Chemistry | SpringerLink
Skip to main content

Better Partitions of Protein Graphs for Subsystem Quantum Chemistry

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

Abstract

Determining the interaction strength between proteins and small molecules is key to analyzing their biological function. Quantum-mechanical calculations such as Density Functional Theory (DFT) give accurate and theoretically well-founded results. With common implementations the running time of DFT calculations increases quadratically with molecule size. Thus, numerous subsystem-based approaches have been developed to accelerate quantum-chemical calculations. These approaches partition the protein into different fragments, which are treated separately. Interactions between different fragments are approximated and introduce inaccuracies in the calculated interaction energies.

To minimize these inaccuracies, we represent the amino acids and their interactions as a weighted graph in order to apply graph partitioning. None of the existing graph partitioning work can be directly used, though, due to the unique constraints in partitioning such protein graphs. We therefore present and evaluate several algorithms, partially building upon established concepts, but adapted to handle the new constraints. For the special case of partitioning a protein along the main chain, we also present an efficient dynamic programming algorithm that yields provably optimal results. In the general scenario our algorithms usually improve the previous approach significantly and take at most a few seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://algohub.iti.kit.edu/parco/NetworKit/NetworKit-chemfork/.

References

  1. Andreev, K., Racke, H.: Balanced graph partitioning. Theor. Comput. Syst. 39(6), 929–939 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. Accepted as Chapter in AlgorithmEngineering, Overview Paper concerning the DFG SPP 1307 (2016). Preprint available at http://arxiv.org/abs/1311.3144

    Google Scholar 

  3. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  4. Cramer, C.J.: Essentials of Computational Chemistry. Wiley, New York (2002)

    Google Scholar 

  5. Delling, D., Fleischman, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: An exact combinatorial algorithm for minimum graph bisection. Math. Program. 153(2), 417–458 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fedorov, D.G., Kitaura, K.: Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J. Phys. Chem. A 111, 6904–6914 (2007)

    Article  Google Scholar 

  7. Fedorov, D.G., Nagata, T., Kitaura, K.: Exploring chemistry with the fragment molecular orbital method. Phys. Chem. Chem. Phys. 14, 7562–7577 (2012)

    Article  Google Scholar 

  8. Fiduccia, C., Mattheyses, R.: A linear time heuristic for improving network partitions. In: Proceedings of the 19th ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 175–181, June 1982

    Google Scholar 

  9. Guerra, C.F., Snijders, J.G., te Velde, G., Baerends, E.J.: Towards an order-N DFT method. Theor. Chem. Acc. 99, 391 (1998)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the 6th Annual ACM Symposium on Theory of Computing (STOC 1974), pp. 47–63. ACM Press (1974)

    Google Scholar 

  11. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem. Ann. OR 188(1), 155–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gordon, M.S., Fedorov, D.G., Pruitt, S.R., Slipchenko, L.V.: Fragmentation methods: a route to accurate calculations on large systems. Chem. Rev. 112, 632–672 (2012)

    Article  Google Scholar 

  13. He, X., Zhu, T., Wang, X., Liu, J., Zhang, J.Z.H.: Fragment quantum mechanical calculation of proteins and its applications. Acc. Chem. Res. 47, 2748–2757 (2014)

    Article  Google Scholar 

  14. Hendrickson, B., Leland, R.: A multi-level algorithm for partitioning graphs. In: Proceedings Supercomputing 1995, p. 28. ACM Press (1995)

    Google Scholar 

  15. Jacob, C.R., Neugebauer, J.: Subsystem density-functional theory. WIREs Comput. Mol. Sci. 4, 325–362 (2014)

    Article  Google Scholar 

  16. Jacob, C.R., Visscher, L.: A subsystem density-functional theory approach for the quantumchemical treatment of proteins. J. Chem. Phys. 128, 155102 (2008)

    Article  Google Scholar 

  17. Jensen, F.: Introduction to Computational Chemistry, 2nd edn. Wiley, Chichester (2007)

    Google Scholar 

  18. Kiewisch, K., Jacob, C.R., Visscher, L.: Quantum-chemical electron densities of proteins and of selected protein sites from subsystem density functional theory. J. Chem. Theory Comput. 9, 2425–2440 (2013)

    Article  Google Scholar 

  19. Lanyi, J.K., Schobert, B.: Structural changes in the l photointermediate of bacteriorhodopsin. J. Mol. Biol. 365(5), 1379–1392 (2007)

    Article  Google Scholar 

  20. Ochsenfeld, C., Kussmann, J., Lambrecht, D.S.: Linear-scaling methods in quantum chemistry. In: Lipkowitz, K.B., Cundari, T.R., Boyd, D.B. (eds.) Reviews in Computational Chemistry, vol. 23, pp. 1–82. Wiley-VCH, New York (2007)

    Chapter  Google Scholar 

  21. Olsen, J.G., Flensburg, C., Olsen, O., Bricogne, G., Henriksen, A.: Solving the structure of the bubble protein using the anomaloussulfur signal from single-crystal in-house CuK\(\alpha \) diffractiondata only. Acta Crystallogr. Sect. D 60(2), 250–255 (2004)

    Article  Google Scholar 

  22. Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J.: Crystal structure of the aequorea victoria green fluorescent protein. Science 273(5280), 1392–1395 (1996)

    Article  Google Scholar 

  23. Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., Soldatos, T.G., Kossida, S., Aerts, J., Schneider, R., Bagos, P.G.: Using graph theory to analyze biological networks. BioData Min. 4(1), 1–27 (2011)

    Article  Google Scholar 

  24. Ramage, R., Green, J., Muir, T.W., Ogunjobi, O.M., Love, S., Shaw, K.: Synthetic, structural and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin. Biochem. J. 299(1), 151–158 (1994)

    Article  Google Scholar 

  25. Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph partitioning. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Staudt, C., Sazonovs, A., Meyerhenke, H.: NetworKit: an interactive tool suite for high-performance networkanalysis. CoRR, abs/1403.3005 (2014)

    Google Scholar 

  27. Tronrud, D.E., Allen, J.P.: Reinterpretation of the electron density at the site of the eighth bacteriochlorophyll in the fmo protein from pelodictyon phaeum. Photosynth. Res. 112(1), 71–74 (2012)

    Article  Google Scholar 

  28. von Looz, M., Wolter, M., Jacob, C.,Meyerhenke, H.: Better partitions of protein graphs for subsystem quantum chemistry. Technical Report 5, Karlsruhe Institute of Technology (KIT), 3 (2016). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052814

  29. Wesolowski, T.A., Weber, J.: Kohn-Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interaction molecules. Chem. Phys. Lett. 248, 71–76 (1996)

    Article  Google Scholar 

  30. Zhang, D.W., Zhang, J.Z.H.: Molecular fractionation with conjugate caps for full quantummechanical calculation of protein-molecule interaction energy. J. Chem. Phys. 119, 3599–3605 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz von Looz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

von Looz, M., Wolter, M., Jacob, C.R., Meyerhenke, H. (2016). Better Partitions of Protein Graphs for Subsystem Quantum Chemistry. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics