Abstract
The lifting step of a reversible color space transform employed during image compression may increase the total amount of noise that has to be encoded. Previously, to alleviate this problem in the case of a simple color space transform RDgDb, we replaced transform lifting steps with reversible denoising and lifting steps (RDLS), which are lifting steps integrated with denoising filters. In this study, we apply RDLS to more complex color space transforms LDgEb and RCT and evaluate RDLS effects on bitrates of lossless JPEG-LS, JPEG 2000, and JPEG XR coding for a diverse image test-set. We find that RDLS effects differ among transforms, yet are similar for different algorithms; for the employed denoising filter selection method, on average the bitrate improvements of RDLS-modified LDgEb and RCT are not as high as of the simpler transform. The RDLS applicability reaches beyond image data storage; due to its general nature it may be exploited in other lifting-based transforms, e.g., during the image analysis for data mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Information technology–Lossless and near-lossless compression of continuous-tone still images–Baseline, ISO/IEC International Standard 14495-1 and ITU-T Recommendation T.87 (2006).
- 2.
Information technology–JPEG 2000 image coding system: Core coding system, ISO/IEC International Standard 15444-1 and ITU-T Recommendation T.800 (2004).
- 3.
Information technology–JPEG XR image coding system–Image coding specification, ISO/IEC International Standard 29199-2 and ITU-T Recommendation T.832 (2012).
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
Information technology–JPEG XR image coding system–Reference software, ISO/IEC International Standard 29199-5 and ITU-T Recommendation T.835 (2012).
References
Adams, M.D., Ward, R.K.: JasPer: a portable flexible open-source software tool kit for image coding/processing. In: 2004 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 5, pp. 241–244 (2004). doi:10.1109/ICASSP.2004.1327092
Bernas, T., Starosolski, R., Robinson, J.P., Rajwa, B.: Application of detector precision characteristics and histogram packing for compression of biological fluorescence micrographs. Comput. Methods Programs Biomed. 108(2), 511–523 (2012). doi:10.1016/j.cmpb.2011.03.012
De Simone, F., Goldmann, L., Baroncini, V., Ebrahimi, T.: Subjective evaluation of JPEG XR image compression. In: Proceedings of the SPIE, Applications of Digital Image Processing XXXII, vol. 7443, p. 74430L (2009). doi:10.1117/12.830714
Dufaux, F., Sullivan, G.J., Ebrahimi, T.: The JPEG XR image coding standard. IEEE Sig. Process. Mag. 26(6), 195–199, 204 (2009). doi:10.1109/MSP.2009.934187
Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recogn. Lett. 41, 3–13 (2014). doi:10.1016/j.patrec.2013.08.028
Malvar, H.S., Sullivan, G.J., Srinivasan, S.: Lifting-based reversible color transformations for image compression. In: Proceedings of the SPIE, Applications of Digital Image Processing XXXI, vol. 7073, p. 707307 (2008). doi:10.1117/12.797091
Martucci, S.A.: Reversible compression of HDTV images using median adaptive prediction and arithmetic coding. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1310–1313 (1990)
Srinivasan, S., Tu, C., Regunathan, S.L., Sullivan, G.J.: HD Photo: a new image coding technology for digital photography. In: Proceedings of the SPIE, Applications of Digital Image Processing XXX, vol. 6696, p. 66960A (2007). doi:10.1117/12.767840
Starosolski, R.: Reversible denoising and lifting based color component transformation for lossless image compression (2015). arXiv:1508.06106 [cs.MM]
Starosolski, R.: Compressing high bit depth images of sparse histograms. In: Simos, T.E., Psihoyios, G. (eds.) International Electronic Conference on Computer Science. AIP Conference Proceedings, vol. 1060, pp. 269–272. American Institute of Physics, USA (2008). doi:10.1063/1.3037069
Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014). doi:10.1016/j.jvcir.2014.03.003
Starosolski, R.: Application of reversible denoising and lifting steps to DWT in lossless JPEG 2000 for improved bitrates. Sig. Process. Image Commun. 39(A), 249–263 (2015). doi:10.1016/j.image.2015.09.013
Strutz, T.: Adaptive selection of colour transformations for reversible image compression. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), pp. 1204–1208 (2012)
Strutz, T.: Multiplierless reversible colour transforms and their automatic selection for image data compression. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1249–1259 (2013). doi:10.1109/TCSVT.2013.2242612
Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards and Practice. The Springer International Series in Engineering and Computer Science, vol. 642. Springer, New York (2004). doi:10.1007/978-1-4615-0799-4
Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000). doi:10.1109/83.855427
Acknowledgments
This work was supported by BK-263/RAU2/2015 grant from the Institute of Informatics, Silesian University of Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Starosolski, R. (2016). Application of Reversible Denoising and Lifting Steps to LDgEb and RCT Color Space Transforms for Improved Lossless Compression. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-34099-9_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-34098-2
Online ISBN: 978-3-319-34099-9
eBook Packages: Computer ScienceComputer Science (R0)