Application of Reversible Denoising and Lifting Steps to LDgEb and RCT Color Space Transforms for Improved Lossless Compression | SpringerLink
Skip to main content

Application of Reversible Denoising and Lifting Steps to LDgEb and RCT Color Space Transforms for Improved Lossless Compression

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery (BDAS 2015, BDAS 2016)

Abstract

The lifting step of a reversible color space transform employed during image compression may increase the total amount of noise that has to be encoded. Previously, to alleviate this problem in the case of a simple color space transform RDgDb, we replaced transform lifting steps with reversible denoising and lifting steps (RDLS), which are lifting steps integrated with denoising filters. In this study, we apply RDLS to more complex color space transforms LDgEb and RCT and evaluate RDLS effects on bitrates of lossless JPEG-LS, JPEG 2000, and JPEG XR coding for a diverse image test-set. We find that RDLS effects differ among transforms, yet are similar for different algorithms; for the employed denoising filter selection method, on average the bitrate improvements of RDLS-modified LDgEb and RCT are not as high as of the simpler transform. The RDLS applicability reaches beyond image data storage; due to its general nature it may be exploited in other lifting-based transforms, e.g., during the image analysis for data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Information technology–Lossless and near-lossless compression of continuous-tone still images–Baseline, ISO/IEC International Standard 14495-1 and ITU-T Recommendation T.87 (2006).

  2. 2.

    Information technology–JPEG 2000 image coding system: Core coding system, ISO/IEC International Standard 15444-1 and ITU-T Recommendation T.800 (2004).

  3. 3.

    Information technology–JPEG XR image coding system–Image coding specification, ISO/IEC International Standard 29199-2 and ITU-T Recommendation T.832 (2012).

  4. 4.

    http://links.uwaterloo.ca/Repository.html.

  5. 5.

    http://www.cipr.rpi.edu/resource/stills/kodak.html.

  6. 6.

    http://documents.epfl.ch/groups/g/gr/gr-eb-unit/www/IQA/Original.zip.

  7. 7.

    http://sun.aei.polsl.pl/~rstaros/optres/.

  8. 8.

    http://www.stat.columbia.edu/~jakulin/jpeg-ls/mirror.htm.

  9. 9.

    http://www.ece.uvic.ca/~mdadams/jasper/.

  10. 10.

    Information technology–JPEG XR image coding system–Reference software, ISO/IEC International Standard 29199-5 and ITU-T Recommendation T.835 (2012).

References

  1. Adams, M.D., Ward, R.K.: JasPer: a portable flexible open-source software tool kit for image coding/processing. In: 2004 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 5, pp. 241–244 (2004). doi:10.1109/ICASSP.2004.1327092

  2. Bernas, T., Starosolski, R., Robinson, J.P., Rajwa, B.: Application of detector precision characteristics and histogram packing for compression of biological fluorescence micrographs. Comput. Methods Programs Biomed. 108(2), 511–523 (2012). doi:10.1016/j.cmpb.2011.03.012

    Article  Google Scholar 

  3. De Simone, F., Goldmann, L., Baroncini, V., Ebrahimi, T.: Subjective evaluation of JPEG XR image compression. In: Proceedings of the SPIE, Applications of Digital Image Processing XXXII, vol. 7443, p. 74430L (2009). doi:10.1117/12.830714

  4. Dufaux, F., Sullivan, G.J., Ebrahimi, T.: The JPEG XR image coding standard. IEEE Sig. Process. Mag. 26(6), 195–199, 204 (2009). doi:10.1109/MSP.2009.934187

    Article  Google Scholar 

  5. Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recogn. Lett. 41, 3–13 (2014). doi:10.1016/j.patrec.2013.08.028

    Article  Google Scholar 

  6. Malvar, H.S., Sullivan, G.J., Srinivasan, S.: Lifting-based reversible color transformations for image compression. In: Proceedings of the SPIE, Applications of Digital Image Processing XXXI, vol. 7073, p. 707307 (2008). doi:10.1117/12.797091

  7. Martucci, S.A.: Reversible compression of HDTV images using median adaptive prediction and arithmetic coding. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1310–1313 (1990)

    Google Scholar 

  8. Srinivasan, S., Tu, C., Regunathan, S.L., Sullivan, G.J.: HD Photo: a new image coding technology for digital photography. In: Proceedings of the SPIE, Applications of Digital Image Processing XXX, vol. 6696, p. 66960A (2007). doi:10.1117/12.767840

  9. Starosolski, R.: Reversible denoising and lifting based color component transformation for lossless image compression (2015). arXiv:1508.06106 [cs.MM]

  10. Starosolski, R.: Compressing high bit depth images of sparse histograms. In: Simos, T.E., Psihoyios, G. (eds.) International Electronic Conference on Computer Science. AIP Conference Proceedings, vol. 1060, pp. 269–272. American Institute of Physics, USA (2008). doi:10.1063/1.3037069

    Google Scholar 

  11. Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 25(5), 1056–1063 (2014). doi:10.1016/j.jvcir.2014.03.003

    Article  Google Scholar 

  12. Starosolski, R.: Application of reversible denoising and lifting steps to DWT in lossless JPEG 2000 for improved bitrates. Sig. Process. Image Commun. 39(A), 249–263 (2015). doi:10.1016/j.image.2015.09.013

    Article  Google Scholar 

  13. Strutz, T.: Adaptive selection of colour transformations for reversible image compression. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO 2012), pp. 1204–1208 (2012)

    Google Scholar 

  14. Strutz, T.: Multiplierless reversible colour transforms and their automatic selection for image data compression. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1249–1259 (2013). doi:10.1109/TCSVT.2013.2242612

    Article  Google Scholar 

  15. Taubman, D.S., Marcellin, M.W.: JPEG2000 Image Compression Fundamentals, Standards and Practice. The Springer International Series in Engineering and Computer Science, vol. 642. Springer, New York (2004). doi:10.1007/978-1-4615-0799-4

    Google Scholar 

  16. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000). doi:10.1109/83.855427

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by BK-263/RAU2/2015 grant from the Institute of Informatics, Silesian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Starosolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Starosolski, R. (2016). Application of Reversible Denoising and Lifting Steps to LDgEb and RCT Color Space Transforms for Improved Lossless Compression. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34099-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34098-2

  • Online ISBN: 978-3-319-34099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics