Abstract
A fuzzy rule base is a crucial part of neuro-fuzzy systems. Data items presented to a neuro-fuzzy system activate rules in a rule base. For incomplete data the firing strength of the rules cannot be calculated. Some neuro-fuzzy systems impute the missing firing strength. This approach has been successfully applied. Unfortunately in some cases the imputed firing strength values are very low for all rules and data items are poorly recognized by the system. That may deteriorate the quality and reliability of elaborated results.
The paper presents a new method for handling missing values in neuro-fuzzy systems in a regression task. The new approach introduces a new imputation technique (imputation with group centres) to avoid very low firing strength for incomplete data items. It outperforms previous method (elaborates lower error rates), avoids numerical problems with very low firing strengths in all fuzzy rules of the system. The proposed systems elaborated interval answer without Karnik-Mendel algorithm. The paper is accompanied by numerical examples and statistical verification on real life data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and control. Holden Day, Incorporated, Oakland (1970)
Cooke, M., Green, P., Josifovski, L., Vizinho, A.: Robust automatic speech recognition with missing and unreliable acoustic data. Speech Commun. 34, 267–285 (2001)
Czogała, E., Łęski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems. Series in Fuzziness and Soft Computing. Physica-Verlag, Springer, Heidelberg, New York (2000)
Gabriel, T.R., Berthold, M.R.: Missing values in fuzzy rule induction. In: SMC, pp. 1473–1476 (2005)
Grzymala-Busse, J.W.: A rough set approach to data with missing attribute values. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 58–67. Springer, Heidelberg (2006)
Himmelspach, L., Conrad, S.: Fuzzy clustering of incomplete data based on cluster dispersion. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 59–68. Springer, Heidelberg (2010)
Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)
Korytkowski, M., Nowicki, R., Scherer, R., Rutkowski, L.: Ensemble of rough-neuro-fuzzy systems for classification with missing features. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence), Hong Kong, pp. 1745–1750, June 2008
Mackey, M.C., Glass, L.: Oscillation and Chaos in physiological control systems. Science 197(4300), 287–289 (1977)
Matyja, A., Simiński, K.: Comparison of algorithms for clustering incomplete data. Found. Comput. Decis. Sci. 39(2), 107–127 (2014)
Nowicki, R.: Rough-neuro-fuzzy system with MICOG defuzzification. In: 2006 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1958–1965 (2006)
Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)
Nowicki, R.K.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(6), 1334–1347 (2009)
Nowicki, R.K.: On classification with missing data using rough-neuro-fuzzy systems. Int. J. Appl. Math. Comput. Sci. 20(1), 55–67 (2010)
Nowicki, R.K., Korytkowski, M., Scherer, R., Nowak, B.A.: Design methodology for rough-neuro-fuzzy classification with missing data. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1650–1657 (2015)
Renz, C., Rajapakse, J.C., Razvi, K., Liang, S.K.C.: Ovarian cancer classification with missing data. In: Proceedings of the 9th International Conference on Neural Information Processing, ICONIP 2002, vol. 2, pp. 809–813, Singapore (2002)
Sikora, M., Simiński, K.: Comparison of incomplete data handling techniques for neuro-fuzzy systems. Comput. Sci. 15(4), 441–458 (2014)
Sikora, M., Krzystanek, Z., Bojko, B., Śpiechowicz, K.: Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings. J. Min. Sci. 47(4), 493–505 (2011)
Simiński, K.: Neuro-rough-fuzzy approach for regression modelling from missing data. Int. J. Appl. Math. Comput. Sci. 22(2), 461–476 (2012)
Simiński, K.: Clustering with missing values. Fundamenta Informaticae 123(3), 331–350 (2013)
Simiński, K.: Rough subspace neuro-fuzzy system. Fuzzy Sets Syst. 269, 30–46 (2015). http://www.sciencedirect.com/science/article/pii/S0165011414003108
Siminski, K.: Imputation of missing values by inversion of fuzzy neuro-system. In: Gruca, A., Brachman, S., Czachórski, T. (eds.) Man-Machine Interactions 4. AISC, pp. 573–582. Springer International Publishing, Heidelberg (2016)
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)
Zhang, S.: Shell-neighbor method and its application in missing data imputation. Appl. Intell. 35(1), 123–133 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Siminski, K. (2016). New Rough-Neuro-Fuzzy Approach for Regression Task in Incomplete Data. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-34099-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-34098-2
Online ISBN: 978-3-319-34099-9
eBook Packages: Computer ScienceComputer Science (R0)