Exploiting Structure in Floating-Point Arithmetic | SpringerLink
Skip to main content

Exploiting Structure in Floating-Point Arithmetic

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

Abstract

The analysis of algorithms in IEEE floating-point arithmetic is most often carried out via repeated applications of the so-called standard model, which bounds the relative error of each basic operation by a common epsilon depending only on the format. While this approach has been eminently useful for establishing many accuracy and stability results, it fails to capture most of the low-level features that make floating-point arithmetic so highly structured. In this paper, we survey some of those properties and how to exploit them in rounding error analysis. In particular, we review some recent improvements of several classical, Wilkinson-style error bounds from linear algebra and complex arithmetic that all rely on such structure properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baudin, M.: Error bounds of complex arithmetic, June 2011. http://forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf

  2. Brent, R.P., Percival, C., Zimmermann, P.: Error bounds on complex floating-point multiplication. Math. Comput. 76, 1469–1481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brent, R.P., Zimmerman, P.: Modern Computer Arithmetic. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  4. Brunie, N.: Contributions to Computer Arithmetic and Applications to Embedded Systems. Ph.D. thesis, École Normale Supérieure de Lyon, Lyon, France, May 2014. https://tel.archives-ouvertes.fr/tel-01078204

  5. Champagne, W.P.: On finding roots of polynomials by hook or by crook. Master’s thesis, University of Texas, Austin, Texas (1964)

    Google Scholar 

  6. Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods, From the Viewpoint of Backward Error Analysis. Springer, New York (2013)

    Book  MATH  Google Scholar 

  7. Cornea, M., Harrison, J., Tang, P.T.P.: Scientific Computing on Itanium\({}^{\textregistered }\)-based Systems. Intel Press, Hillsboro (2002)

    Google Scholar 

  8. Dekker, T.J.: A floating-point technique for extending the available precision. Numer. Math. 18, 224–242 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  10. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

    Article  Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  12. Graillat, S., Lefèvre, V., Muller, J.M.: On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic. Numer. Algorithms 70, 653–667 (2015). http://link.springer.com/article/10.1007/s11075-015-9967-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang. Syst. 18(2), 139–174 (1996)

    Article  Google Scholar 

  14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  15. Higham, N.J.: Floating-point arithmetic. In: Higham, N.J., Dennis, M.R., Glendinning, P., Martin, P.A., Santosa, F., Tanner, J. (eds.) The Princeton Companion to Applied Mathematics, pp. 96–97. Princeton University Press, Princeton (2015)

    Google Scholar 

  16. Holm, J.E.: Floating-Point Arithmetic and Program Correctness Proofs. Ph.D. thesis, Cornell University, Ithaca, NY, USA, August 1980

    Google Scholar 

  17. IEEE Computer Society: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985. IEEE Computer Society, New York (1985)

    Google Scholar 

  18. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754–2008. IEEE Computer Society, New York (2008)

    Google Scholar 

  19. Jeannerod, C.P.: A radix-independent error analysis of the Cornea-Harrison-Tang method, to appear in ACM Trans. Math. Softw. https://hal.inria.fr/hal-01050021

  20. Jeannerod, C.P., Kornerup, P., Louvet, N., Muller, J.M.: Error bounds on complex floating-point multiplication with an FMA, to appear in Math. Comput. https://hal.inria.fr/hal-00867040v4

  21. Jeannerod, C.P., Louvet, N., Muller, J.M.: Further analysis of Kahan’s algorithm for the accurate computation of \(2\times 2\) determinants. Math. Comput. 82(284), 2245–2264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeannerod, C.P., Louvet, N., Muller, J.M., Plet, A.: A library for symbolic floating-point arithmetic (2015). https://hal.inria.fr/hal-01232159

  23. Jeannerod, C.-P., Louvet, N., Muller, J.-M., Plet, A.: Sharp error bounds for complex floating-point inversion. Numer. Algorithms 1–26 (2016). https://hal-ens-lyon.archives-ouvertes.fr/ensl-01195625

  24. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeannerod, C.P., Rump, S.M.: On relative errors of floating-point operations: optimal bounds and applications (2014). https://hal.inria.fr/hal-00934443

  26. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)

    Article  Google Scholar 

  27. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  28. Møller, O.: Quasi double-precision in floating point addition. BIT 5, 37–50 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst. 30(3), 12:1–12:41 (2008)

    Article  Google Scholar 

  30. Muller, J.M.: On the error of computing \(ab+cd\) using Cornea, Harrison and Tang’s method. ACM Trans. Math. Softw. 41(2), 7:1–7:8 (2015)

    Article  Google Scholar 

  31. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)

    Book  MATH  Google Scholar 

  32. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic: Including One Theorem, One Rule of Thumb, and One Hundred and One Exercises. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Book  MATH  Google Scholar 

  34. Priest, D.M.: On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations. Ph.D. thesis, Mathematics Department, University of California, Berkeley, CA, USA, November 1992

    Google Scholar 

  35. Rump, S.M.: Ultimately fast accurate summation. SIAM J. Sci. Comput. 31(5), 3466–3502 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT 52(1), 201–220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rump, S.M., Bünger, F., Jeannerod, C.P.: Improved error bounds for floating-point products and Horner’s scheme. BIT (2015). http://link.springer.com/article/10.1007/s10543-015-0555-z

  39. Rump, S.M., Jeannerod, C.P.: Improved backward error bounds for LU and Cholesky factorizations. SIAM J. Matrix Anal. Appl. 35(2), 684–698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  41. Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci. 1(1), 9–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  43. Wilkinson, J.H.: Error analysis of floating-point computation. Numer. Math. 2, 319–340 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Ilias Kotsireas, Siegfried M. Rump, and Chee Yap for giving me the opportunity to write this survey. This work was supported in part by the French National Research Agency, under grant ANR-13-INSE-0007 (MetaLibm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-Pierre Jeannerod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jeannerod, CP. (2016). Exploiting Structure in Floating-Point Arithmetic. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics