Benchmarking Semantic Capabilities of Analogy Querying Algorithms | SpringerLink
Skip to main content

Benchmarking Semantic Capabilities of Analogy Querying Algorithms

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9642))

Included in the following conference series:

  • 3828 Accesses

Abstract

Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lofi, C.: Analogy queries in information systems – a new challenge. J. Inf. Knowl. Manage. 12, 1350021 (2013)

    Article  Google Scholar 

  2. Hofstadter, D.R.: Analogy as the core of cognition. In: The Analogical Mind, pp. 499–538 (2001)

    Google Scholar 

  3. Gentner, D.: Why we’re so smart. In: Language in Mind: Advances in the Study of Language and Thought, pp. 195–235. MIT Press (2003)

    Google Scholar 

  4. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language (NAACL-HLT), Atlanta, USA (2013)

    Google Scholar 

  5. Gentner, D., Holyoak, K.J., Kokinov, B.N. (eds.): The Analogical Mind: Perspectives from Cognitive Science. MIT Press, Cambridge (2001)

    Google Scholar 

  6. Itkonen, E.: Analogy as Structure and Process: Approaches in Linguistics, Cognitive Psychology and Philosophy of Science. John Benjamins Pub. Co., Amsterdam (2005)

    Book  Google Scholar 

  7. Shelley, C.: Multiple Analogies in Science and Philosophy. John Benjamins Pub., Amsterdam (2003)

    Book  Google Scholar 

  8. Kant, I.: Critique of Judgement. Hackett, Indianapolis (1790)

    Google Scholar 

  9. Juthe, A.: Argument by analogy. Argumentation 19, 1–27 (2005)

    Article  Google Scholar 

  10. Gentner, D.: Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983)

    Article  Google Scholar 

  11. Gentner, D., Gunn, V.: Structural alignment facilitates the noticing of differences. Mem. Cogn. 29, 565–577 (2001)

    Article  Google Scholar 

  12. Lofi, C., Nieke, C.: Modeling analogies for human-centered information systems. In: Jatowt, A., et al. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Blythe, J., Veloso, M.: Analogical replay for efficient conditional planning. In: National Conference on Artificial Intelligence (AAAI), Providence, Rhode Island, USA (1997)

    Google Scholar 

  14. Leake, D.: Case-Based Reasoning: Experiences, Lessons, and Future Directions. MIT Press, Cambridge (1996)

    Google Scholar 

  15. Forbus, K.D., Mostek, T., Ferguson, R.: Analogy ontology for integrating analogical processing and first-principles reasoning. In: National Conference on Artificial Intelligence (AAAI), Edmonton, Alberta, Canada (2002)

    Google Scholar 

  16. Bollegala, D.T., Matsuo, Y., Ishizuka, M.: Measuring the similarity between implicit semantic relations from the web. In: International Conference on World Wide Web (WWW), Madrid, Spain (2009)

    Google Scholar 

  17. Davidov, D.: Unsupervised discovery of generic relationships using pattern clusters and its evaluation by automatically generated SAT analogy questions. In: Association for Computational Linguistics: Human Language Technologies (ACL:HLT), Columbus, Ohio, USA (2008)

    Google Scholar 

  18. Harris, Z.: Distributional structure. Word 10, 146–162 (1954)

    Article  Google Scholar 

  19. Lofi, C.: Measuring semantic similarity and relatedness with distributional and knowledge-based approaches. Database Soc. Jpn. J. 14, 1–9 (2016)

    Google Scholar 

  20. Ștefănescu, D., Banjade, R., Rus, V.: Latent semantic analysis models on Wikipedia and TASA. In: Language Resources Evaluation Conference (LREC), Reykjavik, Island (2014)

    Google Scholar 

  21. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. Adv. Neural Inf. Process. Syst. 21, 1081–1088 (2009)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Conference on Empirical Methods on Natural Language Processing (EMNLP), Doha, Qatar (2014)

    Google Scholar 

  23. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  24. Littman, M., Turney, P.: SAT Aanalogy Challange Dataset. http://aclweb.org/aclwiki/index.php?title=SAT_Analogy_Questions_(State_of_the_art)

  25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013)

    Google Scholar 

  26. Gao, B., Bian, J., Liu, T.-Y.: WordRep: a benchmark for research on learning word representations. In: ICML Workshop on Knowledge-Powered Deep Learning for Text Mining, Beijing, China (2014)

    Google Scholar 

  27. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. In: International Conference on World Wide Web (WWW), Hong Kong, China (2001)

    Google Scholar 

  28. Hill, F., Reichart, R., Korhonen, A.: SimLex-999: evaluating semantic models with (genuine) similarity estimation. Prepr. Publ. arXiv. arXiv:1408.3456 2014

  29. Lofi, C., Selke, J., Balke, W.-T.: Information extraction meets crowdsourcing: a promising couple. Datenbank-Spektrum. 12, 109–120 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lofi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lofi, C., Ahamed, A., Kulkarni, P., Thakkar, R. (2016). Benchmarking Semantic Capabilities of Analogy Querying Algorithms. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, X., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9642. Springer, Cham. https://doi.org/10.1007/978-3-319-32025-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32025-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32024-3

  • Online ISBN: 978-3-319-32025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics