Abstract
Currently, crowdsourced query processing is done on reward-driven platforms such as Amazon Mechanical Turk (AMT) and Crowd Flower. However, due to budget constraints for conducting a crowdsourcing task in practice, the scalability is inherently poor. In this paper, we exploit microblogs for supporting crowdsourced query processing. We leverage the social computation power and decentralize the evaluation of the crowdsourcing platforms queries towards social networks. We propose a new problem of minimizing the cost of processing crowdsourced queries on microblogs, given a specified accuracy threshold of users’ votes. This problem is NP-hard and its computation is #P-hard. To tackle this problem, we develop a greedy algorithm with a quality guarantee. We demonstrate the performance on real datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Amazon Mechanical Turk (or simply AMT) platform at https://www.mturk.com.
- 2.
CrowdFlower platform at https://www.crowdflower.com.
References
Appendix. http://www.cse.ust.hk/~wilfred/CQP.html
Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher. In: WWW, pp. 1009–1018 (2012)
Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask?: jury selection for decision making tasks on micro-blog services. VLDB 5(11), 1495–1506 (2012)
Chai, X., Vuong, B.Q., Doan, A., Naughton, J.F.: Efficiently incorporating user feedback into information extraction and integration programs. In: SIGMOD, pp. 87–100 (2009)
Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: ICDM (2010)
Chen, X., Bennett, P.N., Collins-Thompson, K., Horvitz, E.: Pairwise ranking aggregation in a crowdsourced setting. In: WSDM, pp. 193–202 (2013)
Davidson, S.B., Khanna, S., Milo, T., Roy, S.: Using the crowd for top-k and group-by queries. In: ICDT, pp. 225–236 (2013)
Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: WWW, pp. 469–478 (2012)
Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowdsourcing search for topic experts in microblogs. In: SIGIR, pp. 575–590 (2012)
Gomes, R.G., Welinder, P., Krause, A., Perona, P.: Crowdclustering. In: NIPS, pp. 558–566 (2011)
Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW, pp. 47–48 (2011)
Guo, S., Parameswaran, A., Garcia-Molina, H.: So who won?: dynamic max discovery with the crowd. In: SIGMO, pp. 385–396 (2012)
Kaplan, H., Lotosh, I., Milo, T., Novgorodov, S.: Answering planning queries with the crowd. VLDB 6(9), 697–708 (2013)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)
Liu, Q., Peng, J., Ihler, A.T.: Variational inference for crowdsourcing. In: NIPS, pp. 692–700 (2012)
Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: Cdas: a crowdsourcing data analytics system. VLDB 5(10), 1040–1051 (2012)
Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins. VLDB 5(1), 13–24 (2011)
Parameswaran, A.G., Garcia-Molina, H., Park, H., Polyzotis, N., Ramesh, A., Widom, J.: Crowdscreen: algorithms for filtering data with humans. In: SIGMOD, pp. 361–372 (2012)
Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N., Widom, J.: Deco: declarative crowdsourcing. In: CIKM, pp. 1203–1212 (2012)
Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning from crowds. JMLR 11, 1297–1322 (2010)
Selke, J., Lofi, C., Balke, W.-T.: Pushing the boundaries of crowd-enabled databases with query-driven schema expansion. VLDB 5(6), 538–549 (2012)
Sojump. http://www.sojump.com
Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.: Crowdsourced enumeration queries. In: ICDE, pp. 673–684 (2013)
Venetis, P., Garcia-Molina, H., Huang, K., Polyzotis, N.: Max algorithms in crowdsourcing environments. In: WWW, pp. 989–998 (2012)
Wang, G., Wilson, C., Zhao, X., Zhu, Y., Mohanlal, M., Zheng, H., Zhao, B.Y.: Serf and turf: crowdturfing for fun and profit. In: WWW, pp. 679–688 (2012)
Wang, J., Li, G., Kraska, T., Franklin, M.J., Feng, J.: Leveraging transitive relations for crowdsourced joins. In: SIGMOD, pp. 229–240 (2013)
Wang, X., Zhao, Z., Ng, W.: A comparative study of team formation in social networks. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp. 389–404. Springer, Heidelberg (2015)
Welinder, P., Branson, S., Perona, P., Belongie, S.J.: The multidimensional wisdom of crowds. In: NIPS, pp. 2424–2432 (2010)
Yi, J., Jin, R., Jain, S., Yang, T., Jain, A.K.: Semi-crowdsourced clustering: generalizing crowd labeling by robust distance metric learning. In: NIPS, pp. 1772–1780 (2012)
Zhao, Z., Cheng, J., Wei, F., Zhou, M., Ng, W., Wu, Y.: Socialtransfer: transferring social knowledge for cold-start cowdsourcing. In CIKM, pp. 779–788 (2014)
Zhao, Z., Ng, W., Zhang, Z.: Crowdseed: query processing on microblogs. In: EDBT, pp. 729–732 (2013)
Zhao, Z., Wei, F., Zhou, M., Chen, W., Ng, W.: Crowd-selection query processing in crowdsourcing databases: a task-driven approach. In: EDBT (2015)
Zhao, Z., Wei, F., Zhou, M., Ng, W.: Cold-start expert finding in community question answering via graph regularization. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp. 21–38. Springer, Heidelberg (2015)
Zhao, Z., Yan, D., Ng, W., Gao, S.: A transfer learning based framework of crowd-selection on twitter. In: KDD, pp. 1514–1517 (2013)
Zhao, Z., Zhang, L., He, X., Ng, W.: Expert finding for question answering via graph regularized matrix completion. IEEE Trans. Knowl. Data Eng. 27, 993–1004 (2015)
Zhou, D., Basu, S., Mao, Y., Platt, J.C.: Learning from the wisdom of crowds by minimax entropy. In: NIPS, pp. 2195–2203 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, W., Zhao, Z., Wang, X., Ng, W. (2016). Crowdsourced Query Processing on Microblogs. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, X., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9642. Springer, Cham. https://doi.org/10.1007/978-3-319-32025-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-32025-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32024-3
Online ISBN: 978-3-319-32025-0
eBook Packages: Computer ScienceComputer Science (R0)