Crowdsourced Query Processing on Microblogs | SpringerLink
Skip to main content

Crowdsourced Query Processing on Microblogs

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9642))

Included in the following conference series:

  • 3923 Accesses

Abstract

Currently, crowdsourced query processing is done on reward-driven platforms such as Amazon Mechanical Turk (AMT) and Crowd Flower. However, due to budget constraints for conducting a crowdsourcing task in practice, the scalability is inherently poor. In this paper, we exploit microblogs for supporting crowdsourced query processing. We leverage the social computation power and decentralize the evaluation of the crowdsourcing platforms queries towards social networks. We propose a new problem of minimizing the cost of processing crowdsourced queries on microblogs, given a specified accuracy threshold of users’ votes. This problem is NP-hard and its computation is #P-hard. To tackle this problem, we develop a greedy algorithm with a quality guarantee. We demonstrate the performance on real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Amazon Mechanical Turk (or simply AMT) platform at https://www.mturk.com.

  2. 2.

    CrowdFlower platform at https://www.crowdflower.com.

References

  1. Appendix. http://www.cse.ust.hk/~wilfred/CQP.html

  2. Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher. In: WWW, pp. 1009–1018 (2012)

    Google Scholar 

  3. Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask?: jury selection for decision making tasks on micro-blog services. VLDB 5(11), 1495–1506 (2012)

    Google Scholar 

  4. Chai, X., Vuong, B.Q., Doan, A., Naughton, J.F.: Efficiently incorporating user feedback into information extraction and integration programs. In: SIGMOD, pp. 87–100 (2009)

    Google Scholar 

  5. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: ICDM (2010)

    Google Scholar 

  6. Chen, X., Bennett, P.N., Collins-Thompson, K., Horvitz, E.: Pairwise ranking aggregation in a crowdsourced setting. In: WSDM, pp. 193–202 (2013)

    Google Scholar 

  7. Davidson, S.B., Khanna, S., Milo, T., Roy, S.: Using the crowd for top-k and group-by queries. In: ICDT, pp. 225–236 (2013)

    Google Scholar 

  8. Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: WWW, pp. 469–478 (2012)

    Google Scholar 

  9. Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowdsourcing search for topic experts in microblogs. In: SIGIR, pp. 575–590 (2012)

    Google Scholar 

  10. Gomes, R.G., Welinder, P., Krause, A., Perona, P.: Crowdclustering. In: NIPS, pp. 558–566 (2011)

    Google Scholar 

  11. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW, pp. 47–48 (2011)

    Google Scholar 

  12. Guo, S., Parameswaran, A., Garcia-Molina, H.: So who won?: dynamic max discovery with the crowd. In: SIGMO, pp. 385–396 (2012)

    Google Scholar 

  13. Kaplan, H., Lotosh, I., Milo, T., Novgorodov, S.: Answering planning queries with the crowd. VLDB 6(9), 697–708 (2013)

    Google Scholar 

  14. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  15. Liu, Q., Peng, J., Ihler, A.T.: Variational inference for crowdsourcing. In: NIPS, pp. 692–700 (2012)

    Google Scholar 

  16. Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: Cdas: a crowdsourcing data analytics system. VLDB 5(10), 1040–1051 (2012)

    Google Scholar 

  17. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins. VLDB 5(1), 13–24 (2011)

    Google Scholar 

  18. Parameswaran, A.G., Garcia-Molina, H., Park, H., Polyzotis, N., Ramesh, A., Widom, J.: Crowdscreen: algorithms for filtering data with humans. In: SIGMOD, pp. 361–372 (2012)

    Google Scholar 

  19. Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N., Widom, J.: Deco: declarative crowdsourcing. In: CIKM, pp. 1203–1212 (2012)

    Google Scholar 

  20. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning from crowds. JMLR 11, 1297–1322 (2010)

    MathSciNet  Google Scholar 

  21. Selke, J., Lofi, C., Balke, W.-T.: Pushing the boundaries of crowd-enabled databases with query-driven schema expansion. VLDB 5(6), 538–549 (2012)

    Google Scholar 

  22. Sojump. http://www.sojump.com

  23. Trushkowsky, B., Kraska, T., Franklin, M.J., Sarkar, P.: Crowdsourced enumeration queries. In: ICDE, pp. 673–684 (2013)

    Google Scholar 

  24. Venetis, P., Garcia-Molina, H., Huang, K., Polyzotis, N.: Max algorithms in crowdsourcing environments. In: WWW, pp. 989–998 (2012)

    Google Scholar 

  25. Wang, G., Wilson, C., Zhao, X., Zhu, Y., Mohanlal, M., Zheng, H., Zhao, B.Y.: Serf and turf: crowdturfing for fun and profit. In: WWW, pp. 679–688 (2012)

    Google Scholar 

  26. Wang, J., Li, G., Kraska, T., Franklin, M.J., Feng, J.: Leveraging transitive relations for crowdsourced joins. In: SIGMOD, pp. 229–240 (2013)

    Google Scholar 

  27. Wang, X., Zhao, Z., Ng, W.: A comparative study of team formation in social networks. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp. 389–404. Springer, Heidelberg (2015)

    Google Scholar 

  28. Welinder, P., Branson, S., Perona, P., Belongie, S.J.: The multidimensional wisdom of crowds. In: NIPS, pp. 2424–2432 (2010)

    Google Scholar 

  29. Yi, J., Jin, R., Jain, S., Yang, T., Jain, A.K.: Semi-crowdsourced clustering: generalizing crowd labeling by robust distance metric learning. In: NIPS, pp. 1772–1780 (2012)

    Google Scholar 

  30. Zhao, Z., Cheng, J., Wei, F., Zhou, M., Ng, W., Wu, Y.: Socialtransfer: transferring social knowledge for cold-start cowdsourcing. In CIKM, pp. 779–788 (2014)

    Google Scholar 

  31. Zhao, Z., Ng, W., Zhang, Z.: Crowdseed: query processing on microblogs. In: EDBT, pp. 729–732 (2013)

    Google Scholar 

  32. Zhao, Z., Wei, F., Zhou, M., Chen, W., Ng, W.: Crowd-selection query processing in crowdsourcing databases: a task-driven approach. In: EDBT (2015)

    Google Scholar 

  33. Zhao, Z., Wei, F., Zhou, M., Ng, W.: Cold-start expert finding in community question answering via graph regularization. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9049, pp. 21–38. Springer, Heidelberg (2015)

    Google Scholar 

  34. Zhao, Z., Yan, D., Ng, W., Gao, S.: A transfer learning based framework of crowd-selection on twitter. In: KDD, pp. 1514–1517 (2013)

    Google Scholar 

  35. Zhao, Z., Zhang, L., He, X., Ng, W.: Expert finding for question answering via graph regularized matrix completion. IEEE Trans. Knowl. Data Eng. 27, 993–1004 (2015)

    Article  Google Scholar 

  36. Zhou, D., Basu, S., Mao, Y., Platt, J.C.: Learning from the wisdom of crowds by minimax entropy. In: NIPS, pp. 2195–2203 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, W., Zhao, Z., Wang, X., Ng, W. (2016). Crowdsourced Query Processing on Microblogs. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, X., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9642. Springer, Cham. https://doi.org/10.1007/978-3-319-32025-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32025-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32024-3

  • Online ISBN: 978-3-319-32025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics