Computational Soundness of Uniformity Properties for Multi-party Computation Based on LSSS | SpringerLink
Skip to main content

Computational Soundness of Uniformity Properties for Multi-party Computation Based on LSSS

  • Conference paper
  • First Online:
Trusted Systems (INTRUST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9565))

Included in the following conference series:

  • 394 Accesses

Abstract

We provide a symbolic model for multi-party computation based on linear secret-sharing scheme, and prove that this model is computationally sound: if there is an attack in the computational world, then there is an attack in the symbolic (abstract) model. Our original contribution is that we deal with the uniformity properties, which cannot be described using a single execution trace, while considering an unbounded number of sessions of the protocols in the presence of active and adaptive adversaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science, pp. 427–437 (1987)

    Google Scholar 

  3. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. He, A.J., Dawson, E.: Multistage secret sharing based on one-way function. Electron. Lett. 30(9), 1591–1592 (1994)

    Article  Google Scholar 

  5. Chien, H.-Y., Tseng, J.K.: A practical (t, n) multi-secret sharing scheme. IEICE Trans. Fundam. Electron. Commun. Comput. 83–A(12), 2762–2765 (2000)

    Google Scholar 

  6. Shao, J., Cao, Z.F.: A new efficient (t, n) verifiable multi-secret sharing (VMSS) based on YCH scheme. Appl. Math. Comput. 168(1), 135–140 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Zhao, J., Zhang, J., Zhao, R.: A practical verifiable multi-secret sharing scheme. Comput. Stand. Interfaces 29(1), 138–141 (2007)

    Article  Google Scholar 

  8. Yang, C.C., Chang, T.Y., Hwang, M.S.: A (t, n) multi-secret sharing scheme. Appl. Math. Comput. 151, 483–490 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proceedings of the 28th Symposium on Principles of Programming Languages (POPL), pp. 104–115. ACM Press (2001)

    Google Scholar 

  12. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). J. Crypt. 15(2), 103–127 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and verification of secure multi-party computations. In: Proceedings of ARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS) (2010)

    Google Scholar 

  14. Backes, M., Hofheinz, D., Unruh, D.: A general framework for computational soundness proofs or the computational soundness of the applied pi-calculus. IACR ePrint Archive 2009/080 (2009)

    Google Scholar 

  15. Backes, M., Bendun, F., Unruh, D.: Computational soundness of symbolic zero-knowledge proofs: weaker assumptions and mechanized verification. In: Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp. 206–225. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Backes, M., Malik, A., Unruh, D.: Computational soundness without protocol restrictions. In: CCS, pp. 699–711. ACM Press (2012)

    Google Scholar 

  17. Kusters, R., Tuengerthal, M.: Computational soundness for key exchange protocols with symmetric encryption. In: Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS), pp. 91–100. ACM Press (2009)

    Google Scholar 

  18. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multiparty secure computation. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 494–503. ACM Press (2002)

    Google Scholar 

  19. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In: Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS), pp. 109–118. ACM Press (2008)

    Google Scholar 

  20. Comon-Lundh, H., Cortier, V., Scerri, G.: Security proof with dishonest keys. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol. 7215, pp. 149–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Canetti, R.: Herzog: universally composable symbolic security analysis. J. Cryptol. 24(1), 83–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Backes, M., Mohammadi, E., Ruffing, T.: Computational soundness results for ProVerif. bridging the gap from trace properties to uniformity. In: Kremer, S., Abadi, M. (eds.) POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 42–62. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of 28th STOC, pp. 639–648 (1996)

    Google Scholar 

  24. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Canetti, R., Rabin, T.: Universal composition with joint state. Cryptology ePrint Archive. Report 2002/047 (2002). http://eprint.iacr.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, H., Sakurai, K. (2016). Computational Soundness of Uniformity Properties for Multi-party Computation Based on LSSS. In: Yung, M., Zhang, J., Yang, Z. (eds) Trusted Systems. INTRUST 2015. Lecture Notes in Computer Science(), vol 9565. Springer, Cham. https://doi.org/10.1007/978-3-319-31550-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31550-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31549-2

  • Online ISBN: 978-3-319-31550-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics