On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction and Meet-in-the-Middle Attack | SpringerLink
Skip to main content

On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction and Meet-in-the-Middle Attack

  • Conference paper
  • First Online:
Progress in Cryptology – AFRICACRYPT 2016 (AFRICACRYPT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9646))

Included in the following conference series:

Abstract

The security of many cryptographic schemes has been based on special instances of the Learning with Errors (LWE) problem, e.g., Ring-LWE, LWE with binary secret, or LWE with ternary error. However, recent results show that some subclasses are weaker than expected. In this work we show that LWE with binary error, introduced by Micciancio and Peikert, is one such subclass. We achieve this by applying the Howgrave-Graham attack on NTRU, which is a combination of lattice techniques and a Meet-in-the-Middle approach, to this setting. We show that the attack outperforms all other currently existing algorithms for several natural parameter sets. For instance, for the parameter set \(n=256\), \(m=512\), \(q=256\), this attack on LWE with binary error only requires \(2^{85}\) operations, while the previously best attack requires \(2^{117}\) operations. We additionally present a complete and improved analysis of the attack, using analytic techniques. Finally, based on the attack, we give concrete hardness estimations that can be used to select secure parameters for schemes based on LWE with binary error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. In: IACR Cryptology ePrint Archive 2014, p. 1018 (2014)

    Google Scholar 

  2. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albrecht, M.R., Faugère, J., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the BKW algorithm on LWE. In: Krawczyk [28], pp. 429–445

    Google Scholar 

  4. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Heidelberg (2014)

    Google Scholar 

  5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Babai, L.: On Lovász’ lattice reduction and the nearest lattice pointproblem. In: Mehlhorn, K. (ed.) STACS 85. LNCS, vol. 182, pp. 13–20. Springer, Berlin (1985)

    Chapter  Google Scholar 

  8. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Heidelberg (2014)

    Google Scholar 

  10. Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved exponential-time algorithms for inhomogeneous-sis. In: IACR Cryptology ePrint Archive 2014, p. 593 (2014)

    Google Scholar 

  11. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from(standard) LWE. In: Ostrovsky, R. (eds.) FOCS 2011, pp. 97–106, Palm Springs, CA, USA. IEEE Computer Society , 22–25 October 2011

    Google Scholar 

  13. Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with binary error: revisiting the hybridlattice-reduction and meet-in-the-middle attack. Cryptology ePrint Archive, Report 2016/089 (2016). http://eprint.iacr.org/

  14. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  15. Chen, H., Lauter, K.E., Stange, K.E.: Attacks on search RLWE. IACR Cryptology ePrint Archive 2015, p. 971 (2015)

    Google Scholar 

  16. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–202. Springer, Heidelberg (2015)

    Google Scholar 

  18. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 40–56

    Google Scholar 

  19. Eisenträger, K., Hallgren, S., Lauter, K.: Weak Instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 63–92

    Google Scholar 

  21. Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215. Springer, Berlin (2015)

    MATH  Google Scholar 

  22. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 23–42

    Google Scholar 

  24. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 43–62

    Google Scholar 

  28. Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  29. Laine, K., Lauter, K.E.: Key recovery for LWE in polynomial time. IACR Cryptology ePrint Archive 2015, p. 176 (2015)

    Google Scholar 

  30. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) [28], pp. 345–361

    Google Scholar 

  31. Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)

    Article  MathSciNet  Google Scholar 

  32. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 21–39

    Google Scholar 

  36. Micciancio, D., Regev, O.: Lattice-based cryptography. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  37. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. IACR Cryptology ePrint Archive 2015, p. 1123 (2015)

    Google Scholar 

  38. Olver, F.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  39. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (eds.) STOC 2009, pp. 333–342, Bethesda, MD, USA. ACM, May 31–June 2, 2009

    Google Scholar 

  40. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93, Baltimore, MD, USA. ACM, 22–24 May 2005

    Google Scholar 

  42. Stein, W., et al.: Sage Mathematics Software (Version 6.3). The Sage Development Team (2014). http://www.sagemath.org

Download references

Acknowledgements

Player was supported by an ACE-CSR PhD grant. This work has been co-funded by the DFG as part of project P1 within the CRC 1119 CROSSING. We thank Sean Murphy for useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Buchmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Buchmann, J., Göpfert, F., Player, R., Wunderer, T. (2016). On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction and Meet-in-the-Middle Attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2016. AFRICACRYPT 2016. Lecture Notes in Computer Science(), vol 9646. Springer, Cham. https://doi.org/10.1007/978-3-319-31517-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31517-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31516-4

  • Online ISBN: 978-3-319-31517-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics