Abstract
The security of many cryptographic schemes has been based on special instances of the Learning with Errors (LWE) problem, e.g., Ring-LWE, LWE with binary secret, or LWE with ternary error. However, recent results show that some subclasses are weaker than expected. In this work we show that LWE with binary error, introduced by Micciancio and Peikert, is one such subclass. We achieve this by applying the Howgrave-Graham attack on NTRU, which is a combination of lattice techniques and a Meet-in-the-Middle approach, to this setting. We show that the attack outperforms all other currently existing algorithms for several natural parameter sets. For instance, for the parameter set \(n=256\), \(m=512\), \(q=256\), this attack on LWE with binary error only requires \(2^{85}\) operations, while the previously best attack requires \(2^{117}\) operations. We additionally present a complete and improved analysis of the attack, using analytic techniques. Finally, based on the attack, we give concrete hardness estimations that can be used to select secure parameters for schemes based on LWE with binary error.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. In: IACR Cryptology ePrint Archive 2014, p. 1018 (2014)
Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)
Albrecht, M.R., Faugère, J., Fitzpatrick, R., Perret, L.: Lazy modulus switching for the BKW algorithm on LWE. In: Krawczyk [28], pp. 429–445
Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Heidelberg (2014)
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)
Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)
Babai, L.: On Lovász’ lattice reduction and the nearest lattice pointproblem. In: Mehlhorn, K. (ed.) STACS 85. LNCS, vol. 182, pp. 13–20. Springer, Berlin (1985)
Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Heidelberg (2014)
Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved exponential-time algorithms for inhomogeneous-sis. In: IACR Cryptology ePrint Archive 2014, p. 593 (2014)
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from(standard) LWE. In: Ostrovsky, R. (eds.) FOCS 2011, pp. 97–106, Palm Springs, CA, USA. IEEE Computer Society , 22–25 October 2011
Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with binary error: revisiting the hybridlattice-reduction and meet-in-the-middle attack. Cryptology ePrint Archive, Report 2016/089 (2016). http://eprint.iacr.org/
Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer, Heidelberg (2013)
Chen, H., Lauter, K.E., Stange, K.E.: Attacks on search RLWE. IACR Cryptology ePrint Archive 2015, p. 971 (2015)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)
Duc, A., Tramèr, F., Vaudenay, S.: Better algorithms for LWE and LWR. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 173–202. Springer, Heidelberg (2015)
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 40–56
Eisenträger, K., Hallgren, S., Lauter, K.: Weak Instances of PLWE. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Heidelberg (2014)
Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 63–92
Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215. Springer, Berlin (2015)
Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)
Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 23–42
Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)
Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)
Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) [21], pp. 43–62
Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg (2014)
Laine, K., Lauter, K.E.: Key recovery for LWE in polynomial time. IACR Cryptology ePrint Archive 2015, p. 176 (2015)
Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) [28], pp. 345–361
Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)
Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013)
Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) [14], pp. 21–39
Micciancio, D., Regev, O.: Lattice-based cryptography. Springer, Berlin (2009)
Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. IACR Cryptology ePrint Archive 2015, p. 1123 (2015)
Olver, F.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (eds.) STOC 2009, pp. 333–342, Bethesda, MD, USA. ACM, May 31–June 2, 2009
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 84–93, Baltimore, MD, USA. ACM, 22–24 May 2005
Stein, W., et al.: Sage Mathematics Software (Version 6.3). The Sage Development Team (2014). http://www.sagemath.org
Acknowledgements
Player was supported by an ACE-CSR PhD grant. This work has been co-funded by the DFG as part of project P1 within the CRC 1119 CROSSING. We thank Sean Murphy for useful discussions and comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Buchmann, J., Göpfert, F., Player, R., Wunderer, T. (2016). On the Hardness of LWE with Binary Error: Revisiting the Hybrid Lattice-Reduction and Meet-in-the-Middle Attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2016. AFRICACRYPT 2016. Lecture Notes in Computer Science(), vol 9646. Springer, Cham. https://doi.org/10.1007/978-3-319-31517-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-31517-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31516-4
Online ISBN: 978-3-319-31517-1
eBook Packages: Computer ScienceComputer Science (R0)