Abstract
Zk-SNARKs (succinct non-interactive zero-knowledge arguments of knowledge) are needed in many applications. Unfortunately, all previous zk-SNARKs for interesting languages are either inefficient for the prover, or are non-adaptive and based on a commitment scheme that depends both on the prover’s input and on the language, i.e., they are not commit-and-prove (CaP) SNARKs. We propose a proof-friendly extractable commitment scheme, and use it to construct prover-efficient adaptive CaP succinct zk-SNARKs for different languages, that can all reuse committed data. In new zk-SNARKs, the prover computation is dominated by a linear number of cryptographic operations. We use batch-verification to decrease the verifier’s computation; importantly, batch-verification can be used also in QAP-based zk-SNARKs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
We emphasize that \(\textsc {Circuit-SAT}\) is not our focus; the lines corresponding to \(\textsc {Circuit-SAT}\) are provided only for the sake of comparison. One can use proof boot-strapping [12] to decrease the length of the resulting \(\textsc {Circuit-SAT}\) argument from \(\varTheta (\log n)\), as stated in [25], to \(\varTheta (1)\); we omit further discussion.
References
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryptography and checking. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 170–191. Springer, Heidelberg (1998)
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von Neumann architecture. In: USENIX, pp. 781–796 (2014)
Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)
Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455. Springer, Heidelberg (2014)
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)
Chaabouni, R., Lipmaa, H., Shelat, A.: Additive combinatorics and discrete logarithm based range protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)
Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199. Springer, Heidelberg (2012)
Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: IEEE SP, pp. 253–270 (2015)
Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014)
Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument without random oracles. CT-RSA 2016. LNCS, vol. 9610. Springer, switzerland (2016)
Fauzi, P., Lipmaa, H., Zhang, B.: Efficient modular NIZK arguments from shift and product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 92–121. Springer, Heidelberg (2013)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W.H. Freeman, New York (1979)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108 (2011)
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)
Kilian, J.: Uses of randomness in algorithms and protocols. Ph.D. thesis, Massachusetts Institute of Technology, USA (1989)
Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008)
Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)
Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)
Lipmaa, H.: Efficient NIZK arguments via parallel verification of benes networks. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 416–434. Springer, Heidelberg (2014)
Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. TR 2014/396, IACR (2014). http://eprint.iacr.org/2014/396
Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust. FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2002)
Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: IEEE SP, pp. 238–252 (2013)
Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput. 9(2), 230–250 (1980)
Raz, R.: Elusive functions and lower bounds for arithmetic circuits. Theor. Comput. 6(1), 135–177 (2010)
Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation of private functions with application to data classification. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336–353. Springer, Heidelberg (2009)
Straus, E.G.: Addition chains of vectors. Amer. Math. Mon. 70, 806–808 (1964)
Valiant, L.G.: Universal circuits (Preliminary report). In: STOC, pp. 196–203 (1976)
Acknowledgments
We would like to thank Diego Aranha, Paulo Barreto, Markulf Kohlweiss, and Prastudy Fauzi for useful comments. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653497 (project PANORAMIX), and the Estonian Research Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lipmaa, H. (2016). Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2016. AFRICACRYPT 2016. Lecture Notes in Computer Science(), vol 9646. Springer, Cham. https://doi.org/10.1007/978-3-319-31517-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-31517-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31516-4
Online ISBN: 978-3-319-31517-1
eBook Packages: Computer ScienceComputer Science (R0)