Abstract
In this research, we explore nested or hierarchical query segmentation (An extended version of this paper is available at http://research.microsoft.com/pubs/259980/2015-msri-tr-nest-seg.pdf), where segments are defined recursively as consisting of contiguous sequences of segments or query words, as a more effective representation of a query. We design a lightweight and unsupervised nested segmentation scheme, and propose how to use the tree arising out of the nested representation of a query to improve ranking performance. We show that nested segmentation can lead to significant gains over state-of-the-art flat segmentation strategies.
This research was completed while the author was at IIT Kharagpur.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For all distances, when the same word appears multiple times in a query, each word instance is treated as distinct during pairwise comparisons.
References
Li, Y., Hsu, B.J.P., Zhai, C., Wang, K.: Unsupervised query segmentation using clickthrough for information retrieval. In: SIGIR 2011, pp. 285–294 (2011)
Saha Roy, R., Ganguly, N., Choudhury, M., Laxman, S.: An IR-based evaluation framework for web search query segmentation. In: SIGIR 2012, pp. 881–890 (2012)
Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and Wikipedia. In: WWW 2008, pp. 347–356 (2008)
Mishra, N., Saha Roy, R., Ganguly, N., Laxman, S., Choudhury, M.: Unsupervised query segmentation using only query logs. In: WWW 2011, pp. 91–92 (2011)
Hagen, M., Potthast, M., Stein, B., Bräutigam, C.: Query segmentation revisited. In: WWW 2011, pp. 97–106 (2011)
Cummins, R., O’Riordan, C.: Learning in a pairwise term-term proximity framework for information retrieval. In: SIGIR 2009, pp. 251–258 (2009)
Chaudhari, D.L., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical significance, and word association. In: EMNLP 2011, pp. 1058–1068 (2011)
Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: SIGIR 2006, pp. 19–26 (2006)
Huang, J., Gao, J., Miao, J., Li, X., Wang, K., Behr, F., Giles, C.L.: Exploring web scale language models for search query processing. In: WWW 2010, pp. 451–460 (2010)
Acknowledgments
The first author was supported by Microsoft Corporation and Microsoft Research India under the Microsoft Research India PhD Fellowship Award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Saha Roy, R., Suresh, A., Ganguly, N., Choudhury, M. (2016). Improving Document Ranking for Long Queries with Nested Query Segmentation. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_67
Download citation
DOI: https://doi.org/10.1007/978-3-319-30671-1_67
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30670-4
Online ISBN: 978-3-319-30671-1
eBook Packages: Computer ScienceComputer Science (R0)