Abstract
This paper proposes a subtopic mining method based on three-level hierarchical search intentions. Various subtopic candidates are extracted from web documents using a simple pattern, and higher-level and lower-level subtopics are selected from these candidates. The selected subtopics as second-level subtopics are ranked by a proposed measure, and are expanded and re-ranked considering the characteristics of resources. Using general terms in the higher-level subtopics, we make second-level subtopic groups and generate first-level subtopics. Our method achieved better performance than a state of the art method.
This work was partly supported by the ICT R&D program of MSIP/IITP (10041807), the SYSTRAN International corporation, the BK 21+ Project, and the National Korea Science and Engineering Foundation (KOSEF) (NRF-2010-0012662).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Query dimensions are groups of items extracted from the style of lists such as tables in top retrieved documents [6]. Each dimension has a ranked list of its items.
- 2.
- 3.
- 4.
References
Song, R., Zhang, M., Sakai, T., Kato, M.P., Liu, Y., Sugimoto, M., Wang, Q., Orii, N.: Overview of the NTCIR-9 intent task. In: Proceedings of NTCIR-9 Workshop Meeting, pp. 82–105. National Institute of Informatics, Tokyo, Japan (2011)
Sakai, T., Dou, Z., Yamamoto, T., Liu, Y., Zhang, M., Song, R.: Overview of the NTCIR-10 INTENT-2 task. In: Proceedings of NTCIR-10 Workshop Meeting, pp. 94–123. National Institute of Informatics, Tokyo, Japan (2013)
Liu, Y., Song, R., Zhang, M., Dou, Z., Yamamoto, T., Kato, M., Ohshima, H., Zhou, K.: Overview of the NTCIR-11 imine task. In: Proceedings of NTCIR-11 Workshop Meeting, pp. 8–23. National Institute of Informatics, Tokyo, Japan (2014)
Yamamoto, T., Kato, M.P., Ohshima, H., Tanaka, K.: Kuidl at the NTCIR-11 imine task. In: Proceedings of NTCIR-11 Workshop Meeting, pp. 53–54. National Institute of Informatics, Tokyo, Japan (2014)
Luo, C., Li, X., Khodzhaev, A., Chen, F., Xu, K., Cao, Y., Liu, Y., Zhang, M., Ma, S.: Thusam at NTCIR-11 imine task. In: Proceedings of NTCIR-11 Workshop Meeting, pp. 55–62. National Institute of Informatics, Tokyo, Japan (2014)
Dou, Z., Hu, S., Luo, Y., Song, R., Wen, J.R.: Finding dimensions for queries. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1311–1320. Association for Computing Machinery, Glasgow, Scotland, UK (2011)
Zeng, H.J., He, Q.C., Chen, Z., Ma, W.Y., Ma, J.: Learning to cluster web search results. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 210–217. Association for Computing Machinery, Sheffield, South Yorkshire, UK (2004)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Robertson, S., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3(4), 333–389 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kim, SJ., Shin, J., Lee, JH. (2016). Subtopic Mining Based on Three-Level Hierarchical Search Intentions. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-30671-1_62
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30670-4
Online ISBN: 978-3-319-30671-1
eBook Packages: Computer ScienceComputer Science (R0)