Abstract
Existing research on web search has mainly focused on the optimization and evaluation of single queries. However, in some complex search tasks, users usually need to interact with the search engine multiple times before their needs can be satisfied, the process of which is known as session search. The key to this problem relies on how to utilize the session context from preceding interactions to improve the search accuracy for the current query. Unfortunately, existing research on this topic only formulated limited modeling for session contexts, which in fact can exhibit considerable variations. In this paper, we propose Supervised Local Context Aggregation (SLCA) as a principled framework for complex session context modeling. In SLCA, the global session context is formulated as the combination of local contexts between consecutive interactions. These local contexts are further weighted by multiple weighting hypotheses. Finally, a supervised ranking aggregation is adopted for effective optimization. Extensive experiments on TREC11/12 session track show that our proposed SLCA algorithm outperforms many other session search methods, and achieves the state-of-the-art results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bendersky, M., Fisher, D., Croft, W.B.: Umass at trec 2010 web track: term dependence, spam filtering and quality bias. In: TREC (2010)
Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the impact of short- and long-term behavior on search personalization. In: SIGIR (2012)
Cao, H., Jiang, D., Pei, J., Chen, E., Li, H.: Towards context-aware search by learning a very large variable length hidden markov model from search logs. In: WWW (2009)
Collins-Thompson, K., Bennett, P.N., White, R.W., de la Chica, S., Sontag, D.: Personalizing web search results by reading level. In: CIKM (2011)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. In: Annals of Statistics (2001)
Guan, D., Zhang, S., Yang, H.: Utilizing query change for session search. In: SIGIR (2013)
Guo, Q., White, R.W., Dumais, S.T., Wang, J., Anderson, B.: Predicting query performance using query, result, and user interaction features. In: RIAO (2010)
Jiang, D., Leung, K.W.T., Ng, W.: Context-aware search personalization with concept preference. In: CIKM (2011)
Jiang, J., He, D., Allan, J.: Searching, browsing, and clicking in a search session: changes in user behavior by task and over time. In: SIGIR (2014)
Jiang, J., He, D., Han, S.: On duplicate results in a search session. In: TREC (2012)
Joachims, T.: Training linear svms in linear time. In: KDD (2006)
Kanoulas, E., Carterette, B., Hall, M., Clough, P., Sanderson, M.: Overview of the trec 2011 session track. In: TREC (2011)
Kanoulas, E., Carterette, B., Hall, M., Clough, P., Sanderson, M.: Overview of the trec 2012 session track. In: TREC (2012)
Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: Intent models for contextualising and diversifying query suggestions. In: CIKM (2013)
Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR (2001)
Li, X., Guo, C., Chu, W., Wang, Y.Y.: Deep learning powered in-session contextual ranking using clickthrough data. In: NIPS Workshop on Personalization: Methods and Applications (2014)
Liu, C., Gwizdka, J., Liu, J.: Helping identify when users find useful documents: examination of query reformulation intervals. In: IIiX (2010)
Liu, T., Zhang, C., Gao, Y., Xiao, W., Huang, H.: Bupt\(\_\)wildcat at trec 2011 session track. In: TREC (2011)
Liu, T.Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011)
Luo, J., Zhang, S., Dong, X., Yang, H.: Designing states, actions, and rewards for using POMDP in session search. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 526–537. Springer, Heidelberg (2015)
Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Springer, Heidelberg (2011)
Raman, K., Bennett, P.N., Collins-Thompson, K.: Toward whole-session relevance: exploring intrinsic diversity in web search. In: SIGIR (2013)
Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines. In: SIGIR (2011)
Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: SIGIR (2005)
Shokouhi, M., White, R.W., Bennett, P., Radlinski, F.: Fighting search engine amnesia: reranking repeated results. In: SIGIR (2013)
Ustinovskiy, Y., Serdyukov, P.: Personalization of web-search using short-term browsing context. In: CIKM (2013)
Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware ranking in web search. In: SIGIR (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, Z., Wang, J., Wu, T., Ren, P., Chen, Z., Si, L. (2016). Supervised Local Contexts Aggregation for Effective Session Search. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-30671-1_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30670-4
Online ISBN: 978-3-319-30671-1
eBook Packages: Computer ScienceComputer Science (R0)