Supervised Local Contexts Aggregation for Effective Session Search | SpringerLink
Skip to main content

Supervised Local Contexts Aggregation for Effective Session Search

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

  • 4553 Accesses

Abstract

Existing research on web search has mainly focused on the optimization and evaluation of single queries. However, in some complex search tasks, users usually need to interact with the search engine multiple times before their needs can be satisfied, the process of which is known as session search. The key to this problem relies on how to utilize the session context from preceding interactions to improve the search accuracy for the current query. Unfortunately, existing research on this topic only formulated limited modeling for session contexts, which in fact can exhibit considerable variations. In this paper, we propose Supervised Local Context Aggregation (SLCA) as a principled framework for complex session context modeling. In SLCA, the global session context is formulated as the combination of local contexts between consecutive interactions. These local contexts are further weighted by multiple weighting hypotheses. Finally, a supervised ranking aggregation is adopted for effective optimization. Extensive experiments on TREC11/12 session track show that our proposed SLCA algorithm outperforms many other session search methods, and achieves the state-of-the-art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.

  2. 2.

    https://plg.uwaterloo.ca/~gvcormac/clueweb09spam/.

  3. 3.

    http://www.lemurproject.org/indri/.

References

  1. Bendersky, M., Fisher, D., Croft, W.B.: Umass at trec 2010 web track: term dependence, spam filtering and quality bias. In: TREC (2010)

    Google Scholar 

  2. Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the impact of short- and long-term behavior on search personalization. In: SIGIR (2012)

    Google Scholar 

  3. Cao, H., Jiang, D., Pei, J., Chen, E., Li, H.: Towards context-aware search by learning a very large variable length hidden markov model from search logs. In: WWW (2009)

    Google Scholar 

  4. Collins-Thompson, K., Bennett, P.N., White, R.W., de la Chica, S., Sontag, D.: Personalizing web search results by reading level. In: CIKM (2011)

    Google Scholar 

  5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. In: Annals of Statistics (2001)

    Google Scholar 

  6. Guan, D., Zhang, S., Yang, H.: Utilizing query change for session search. In: SIGIR (2013)

    Google Scholar 

  7. Guo, Q., White, R.W., Dumais, S.T., Wang, J., Anderson, B.: Predicting query performance using query, result, and user interaction features. In: RIAO (2010)

    Google Scholar 

  8. Jiang, D., Leung, K.W.T., Ng, W.: Context-aware search personalization with concept preference. In: CIKM (2011)

    Google Scholar 

  9. Jiang, J., He, D., Allan, J.: Searching, browsing, and clicking in a search session: changes in user behavior by task and over time. In: SIGIR (2014)

    Google Scholar 

  10. Jiang, J., He, D., Han, S.: On duplicate results in a search session. In: TREC (2012)

    Google Scholar 

  11. Joachims, T.: Training linear svms in linear time. In: KDD (2006)

    Google Scholar 

  12. Kanoulas, E., Carterette, B., Hall, M., Clough, P., Sanderson, M.: Overview of the trec 2011 session track. In: TREC (2011)

    Google Scholar 

  13. Kanoulas, E., Carterette, B., Hall, M., Clough, P., Sanderson, M.: Overview of the trec 2012 session track. In: TREC (2012)

    Google Scholar 

  14. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: Intent models for contextualising and diversifying query suggestions. In: CIKM (2013)

    Google Scholar 

  15. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: SIGIR (2001)

    Google Scholar 

  16. Li, X., Guo, C., Chu, W., Wang, Y.Y.: Deep learning powered in-session contextual ranking using clickthrough data. In: NIPS Workshop on Personalization: Methods and Applications (2014)

    Google Scholar 

  17. Liu, C., Gwizdka, J., Liu, J.: Helping identify when users find useful documents: examination of query reformulation intervals. In: IIiX (2010)

    Google Scholar 

  18. Liu, T., Zhang, C., Gao, Y., Xiao, W., Huang, H.: Bupt\(\_\)wildcat at trec 2011 session track. In: TREC (2011)

    Google Scholar 

  19. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  20. Luo, J., Zhang, S., Dong, X., Yang, H.: Designing states, actions, and rewards for using POMDP in session search. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 526–537. Springer, Heidelberg (2015)

    Google Scholar 

  21. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  22. Raman, K., Bennett, P.N., Collins-Thompson, K.: Toward whole-session relevance: exploring intrinsic diversity in web search. In: SIGIR (2013)

    Google Scholar 

  23. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware recommendations with factorization machines. In: SIGIR (2011)

    Google Scholar 

  24. Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: SIGIR (2005)

    Google Scholar 

  25. Shokouhi, M., White, R.W., Bennett, P., Radlinski, F.: Fighting search engine amnesia: reranking repeated results. In: SIGIR (2013)

    Google Scholar 

  26. Ustinovskiy, Y., Serdyukov, P.: Personalization of web-search using short-term browsing context. In: CIKM (2013)

    Google Scholar 

  27. Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware ranking in web search. In: SIGIR (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Z., Wang, J., Wu, T., Ren, P., Chen, Z., Si, L. (2016). Supervised Local Contexts Aggregation for Effective Session Search. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics