Efficient AUC Optimization for Information Ranking Applications | SpringerLink
Skip to main content

Efficient AUC Optimization for Information Ranking Applications

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

Abstract

Adequate evaluation of an information retrieval system to estimate future performance is a crucial task. Area under the ROC curve (AUC) is widely used to evaluate the generalization of a retrieval system. However, the objective function optimized in many retrieval systems is the error rate and not the AUC value. This paper provides an efficient and effective non-linear approach to optimize AUC using additive regression trees, with a special emphasis on the use of multi-class AUC (MAUC) because multiple relevance levels are widely used in many ranking applications. Compared to a conventional linear approach, the performance of the non-linear approach is comparable on binary-relevance benchmark datasets and is better on multi-relevance benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22Nd International Conference on Machine Learning ICML 2005, pp. 89–96. ACM, New York (2005)

    Google Scholar 

  2. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Learning 11, 23–581 (2010)

    Google Scholar 

  3. Calders, T., Jaroszewicz, S.: Efficient AUC optimization for classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 42–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview (2011)

    Google Scholar 

  5. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. Adv. Neural Inf. Process. Syst. 16(16), 313–320 (2004)

    Google Scholar 

  6. Donmez, P., Svore, K., Burges, C.J.: On the optimality of lambdarank. Technical Report MSR-TR-2008-179, Microsoft Research, November 2008. http://research.microsoft.com/apps/pubs/default.aspx?id=76530

  7. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  8. Ganjisaffar, Y., Caruana, R., Lopes, C.V.: Bagging gradient-boosted trees for high precision, low variance ranking models. In: Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pp. 85–94. ACM (2011)

    Google Scholar 

  9. Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the 22Nd International Conference on Machine Learning, pp. 377–384. ACM, New York (2005)

    Google Scholar 

  10. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  11. Microsoft learning to rank datasets. http://research.microsoft.com/en-us/projects/mslr/

  12. Qin, T., Liu, T.: Introducing LETOR 4.0 datasets. CoRR abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

  13. Qin, T., Liu, T.Y., Xu, J., Li, H.: Letor: A benchmark collection for researchon learning to rank for information retrieval. Inf. Retr. 13(4), 346–374 (2010). http://dx.doi.org/10.1007/s10791-009-9123-y

    Article  Google Scholar 

  14. Svore, K.M., Volkovs, M.N., Burges, C.J.: Learning to rank with multiple objective functions. In: Proceedings of the 20th International Conference on World Wide Web, pp. 367–376. ACM (2011)

    Google Scholar 

  15. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for information retrieval measures. Inf. Retrieval 13(3), 254–270 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to Dwi Sianto Mansjur for giving helpful guidance and providing valuable comments about this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean J. Welleck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Welleck, S.J. (2016). Efficient AUC Optimization for Information Ranking Applications. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics