Abstract
The user model is considered the core content of any adaptive system. The process that is most challenging in an adaptation system is the modelling of user data. This paper is focused on creating a user model that can be suitably adapted to advertisement applications. To integrate data from different publicly available sources, a social component has been added to the user model, to support advertisements adaptation. In addition, a straightforward and lightweight user model has been targeted, which should be easy to integrate into any existing system. A tool based on this model is introduced and a study that assesses the effectiveness of it via a trial run of a prototype of the tool with different users is described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Internet Advertising Bureau: Internet Advertising Revenues Report 2012 full year results (2012)
Halasz, F., Schwartz, M., Grønbæk, K., Trigg, R.H.: The Dexter hypertext reference model. Commun. ACM 37, 30–39 (1994)
De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based reference model for adaptive hypermedia. In: Proceedings of the Tenth ACM Conference on Hypertext and Hypermedia: Returning to our Diverse Roots: Returning to our Diverse Roots, pp. 147–156. ACM (1999)
Cristea, A.I., de Mooij, A.: LAOS: layered WWW AHS authoring model and their corresponding algebraic operators. In: WWW 2003 (The Twelfth International World Wide Web Conference), Alternate Track on Education, Budapest, Hungary (2003)
Brusilovsky, P.: Adaptive hypermedia: an attempt to analyze and generalize. In: Brusilovsky, P., Kommers, P., Streitz, N. (eds.) MHVR 1994. LNCS, vol. 1077, pp. 288–304. Springer, Heidelberg (1996)
Kobsa, A., Koenemann, J., Pohl, W.: Personalised hypermedia presentation techniques for improving online customer relationships. Knowl. Eng. Rev. 16, 111–155 (2001)
Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)
Bra, P.D., Calvi, L.: AHA! An open adaptive hypermedia architecture. New Rev. Hypermedia Multimedia 4, 115–139 (1998)
Stash, N., De Bra, P., Cristea, A.: Adaptation to learning styles in a general-purpose system AHA! (Adaptive Hypermedia Architecture). In: Educational Technology & Society, vol. 11 (2008)
Smits, D., De Bra, P.: GALE: a highly extensible adaptive hypermedia engine. In: Proceedings of ACM-CHH, pp. 63–72 (2011)
Scotton, J., Stewart, C., Cristea, A.I.: ADE: the adaptive display environment for adaptive hypermedia. In: Proceedings of the ACM Hypertext 2011 International Conference, Eindhoven, The Netherlands (2011)
Kazienko, P., Adamski, M.: AdROSA—Adaptive personalization of web advertising. Inf. Sci. 177, 2269–2295 (2007)
Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., Koseki, Y.: Unintrusive customization techniques for Web advertising. Comput. Netw. 31, 1259–1272 (1999)
Di Ferdinando, A., Rosi, A., Lent, R., Manzalini, A., Zambonelli, F.: MyAds: A system for adaptive pervasive advertisements. Pervasive Mob. Comput. 5, 385–401 (2009)
Brailsford, T.J., Choo, B.S., Davies, P.M.C., Moore, A., Stewart, C.D., Zakaria, M.R.: Web-based hierarchical universal reactive learning environment (WHURLE): an overview (White Paper for the WHURLE Project) (2001)
Mérida, D., Fabregat, R., Marzo, J.-L.: SHAAD: adaptable, adaptive and dynamic hypermedia system for content delivery. In: Workshop on Adaptive Systems for Web Based Education, WASWE 2002. Citeseer, Málaga España (2002)
Davis, H.: Google Advertising Tools: Cashing in with AdSense, AdWords, and the Google APIs. O’Reilly Media Inc., Sebastopol (2006)
Kobsa, A.: Generic user modeling systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 136–154. Springer, Heidelberg (2007)
Al Qudah, D.A., Cristea, A.I., Shi, L., Al-Sayyed, R.M.H., Obeidah, A.: MyAds: a social adaptive system for online advertisement from hypotheses to implementation. In: Proceeding of the International Conference on e-Business and e-Government (ICBG 2014), Zurich, Switzerland, pp. 154–160 (2014)
Faust, K.: Very local structure in social networks. Sociol. Methodol. 37, 209–256 (2007)
TheStatisticsPortal.: Number of monthly active Facebook users worldwide 2008–2014, http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/. Accessed 10 September 2015
Hof, R.D.: Facebook’s new Ad model: You. FORBES 188, 106-+ (2011)
Cristea, A.I.: What can the semantic web do for adaptive educational hypermedia? Educ. Technol. Soc. 7, 40–58 (2004)
Wu, H.: A reference architecture for adaptive hypermedia applications. Technische Universiteit Eindhoven (2002)
http://www.rci.rutgers.edu/~cfs/472_html/Planning/PlanRecog.html
Benaki, E., Karkaletsis, V.A., Spyropoulos, C.D.: Integrating user modeling into information extraction: the UMIE prototype. In: Jameson, A., Paris, C., Tasso, C. (eds.) User Modeling, vol. 97, pp. 55–57. International Centre for Mechanical Sciences. Springer, Heidelberg(1997)
Qaffas, A., Cristea, A.: How to create an E-Advertising domain model: the AEADS approach. In: The 2014 International Conference on e-Learning, e-Business, Enterprise Information Systems, and e-Government (EEE 2014), Las Vegas, USA (2014)
Qaffas, A.A., Cristea, A.I.: How to create an E-Advertising adaptation strategy: the AEADS approach. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 171–178. Springer, Heidelberg (2014)
Benaki, E., Karkaletsis, A., Spyropoulos, D.: User modeling in WWW: the UMIE prototype. In: Proceedings of the Workshop Adaptive Systems and User Modeling on the World Wide Web, 6th International Conference on User Modelling UM, vol. 97 (1997)
McIver, J., Carmines, E.G.: Unidimensional Scaling. Sage, Beverly Hills (1981)
Gliem, J.A., Gliem, R.R.: Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. In: Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education (2003)
Kazienko, P., Adamski, M.: Personalized web advertising method. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 146–155. Springer, Heidelberg (2004)
De Bra, P., Smits, D., Van Der Sluijs, K., Cristea, A., Hendrix, M.: GRAPPLE: personalization and adaptation in learning management systems. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications, vol. 2010, pp. 3029–3038 (2010)
Stash, N., Cristea, A.I., De Bra, P.: Adaptation languages as vehicles of explicit intelligence in adaptive hypermedia. Int. J. Continuing Eng. Educ. Life Long Learn. 17, 319–336 (2007)
Al Qudah, D.A., Cristea, A.I., Hadzidedic, S., AL-Saqqa, S., Rodan, A., Yang, W.: Personalized E-advertisement experience: recommending user targeted Ads. In: 12th International Conference on e-Business Engineering, Bejing, China (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Qaffas, A.A., Cristea, A.I. (2016). Large Scale Evaluation of an Adaptive E-Advertising User Model. In: Obaidat, M., Lorenz, P. (eds) E-Business and Telecommunications. ICETE 2015. Communications in Computer and Information Science, vol 585. Springer, Cham. https://doi.org/10.1007/978-3-319-30222-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-30222-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30221-8
Online ISBN: 978-3-319-30222-5
eBook Packages: Computer ScienceComputer Science (R0)