Large Scale Evaluation of an Adaptive E-Advertising User Model | SpringerLink
Skip to main content

Large Scale Evaluation of an Adaptive E-Advertising User Model

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 585))

Included in the following conference series:

  • 906 Accesses

Abstract

The user model is considered the core content of any adaptive system. The process that is most challenging in an adaptation system is the modelling of user data. This paper is focused on creating a user model that can be suitably adapted to advertisement applications. To integrate data from different publicly available sources, a social component has been added to the user model, to support advertisements adaptation. In addition, a straightforward and lightweight user model has been targeted, which should be easy to integrate into any existing system. A tool based on this model is introduced and a study that assesses the effectiveness of it via a trial run of a prototype of the tool with different users is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Internet Advertising Bureau: Internet Advertising Revenues Report 2012 full year results (2012)

    Google Scholar 

  2. Halasz, F., Schwartz, M., Grønbæk, K., Trigg, R.H.: The Dexter hypertext reference model. Commun. ACM 37, 30–39 (1994)

    Article  Google Scholar 

  3. De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based reference model for adaptive hypermedia. In: Proceedings of the Tenth ACM Conference on Hypertext and Hypermedia: Returning to our Diverse Roots: Returning to our Diverse Roots, pp. 147–156. ACM (1999)

    Google Scholar 

  4. Cristea, A.I., de Mooij, A.: LAOS: layered WWW AHS authoring model and their corresponding algebraic operators. In: WWW 2003 (The Twelfth International World Wide Web Conference), Alternate Track on Education, Budapest, Hungary (2003)

    Google Scholar 

  5. Brusilovsky, P.: Adaptive hypermedia: an attempt to analyze and generalize. In: Brusilovsky, P., Kommers, P., Streitz, N. (eds.) MHVR 1994. LNCS, vol. 1077, pp. 288–304. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Kobsa, A., Koenemann, J., Pohl, W.: Personalised hypermedia presentation techniques for improving online customer relationships. Knowl. Eng. Rev. 16, 111–155 (2001)

    Article  MATH  Google Scholar 

  7. Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Bra, P.D., Calvi, L.: AHA! An open adaptive hypermedia architecture. New Rev. Hypermedia Multimedia 4, 115–139 (1998)

    Article  Google Scholar 

  9. Stash, N., De Bra, P., Cristea, A.: Adaptation to learning styles in a general-purpose system AHA! (Adaptive Hypermedia Architecture). In: Educational Technology & Society, vol. 11 (2008)

    Google Scholar 

  10. Smits, D., De Bra, P.: GALE: a highly extensible adaptive hypermedia engine. In: Proceedings of ACM-CHH, pp. 63–72 (2011)

    Google Scholar 

  11. Scotton, J., Stewart, C., Cristea, A.I.: ADE: the adaptive display environment for adaptive hypermedia. In: Proceedings of the ACM Hypertext 2011 International Conference, Eindhoven, The Netherlands (2011)

    Google Scholar 

  12. Kazienko, P., Adamski, M.: AdROSA—Adaptive personalization of web advertising. Inf. Sci. 177, 2269–2295 (2007)

    Article  Google Scholar 

  13. Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., Koseki, Y.: Unintrusive customization techniques for Web advertising. Comput. Netw. 31, 1259–1272 (1999)

    Article  Google Scholar 

  14. Di Ferdinando, A., Rosi, A., Lent, R., Manzalini, A., Zambonelli, F.: MyAds: A system for adaptive pervasive advertisements. Pervasive Mob. Comput. 5, 385–401 (2009)

    Article  Google Scholar 

  15. Brailsford, T.J., Choo, B.S., Davies, P.M.C., Moore, A., Stewart, C.D., Zakaria, M.R.: Web-based hierarchical universal reactive learning environment (WHURLE): an overview (White Paper for the WHURLE Project) (2001)

    Google Scholar 

  16. Mérida, D., Fabregat, R., Marzo, J.-L.: SHAAD: adaptable, adaptive and dynamic hypermedia system for content delivery. In: Workshop on Adaptive Systems for Web Based Education, WASWE 2002. Citeseer, Málaga España (2002)

    Google Scholar 

  17. www.google.com/adsense/

  18. Davis, H.: Google Advertising Tools: Cashing in with AdSense, AdWords, and the Google APIs. O’Reilly Media Inc., Sebastopol (2006)

    Google Scholar 

  19. http://w3techs.com/technologies/overview/advertising/all

  20. Kobsa, A.: Generic user modeling systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 136–154. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Al Qudah, D.A., Cristea, A.I., Shi, L., Al-Sayyed, R.M.H., Obeidah, A.: MyAds: a social adaptive system for online advertisement from hypotheses to implementation. In: Proceeding of the International Conference on e-Business and e-Government (ICBG 2014), Zurich, Switzerland, pp. 154–160 (2014)

    Google Scholar 

  22. Faust, K.: Very local structure in social networks. Sociol. Methodol. 37, 209–256 (2007)

    Article  Google Scholar 

  23. TheStatisticsPortal.: Number of monthly active Facebook users worldwide 2008–2014, http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/. Accessed 10 September 2015

  24. Hof, R.D.: Facebook’s new Ad model: You. FORBES 188, 106-+ (2011)

    Google Scholar 

  25. Cristea, A.I.: What can the semantic web do for adaptive educational hypermedia? Educ. Technol. Soc. 7, 40–58 (2004)

    MathSciNet  Google Scholar 

  26. Wu, H.: A reference architecture for adaptive hypermedia applications. Technische Universiteit Eindhoven (2002)

    Google Scholar 

  27. http://www.rci.rutgers.edu/~cfs/472_html/Planning/PlanRecog.html

  28. Benaki, E., Karkaletsis, V.A., Spyropoulos, C.D.: Integrating user modeling into information extraction: the UMIE prototype. In: Jameson, A., Paris, C., Tasso, C. (eds.) User Modeling, vol. 97, pp. 55–57. International Centre for Mechanical Sciences. Springer, Heidelberg(1997)

    Google Scholar 

  29. Qaffas, A., Cristea, A.: How to create an E-Advertising domain model: the AEADS approach. In: The 2014 International Conference on e-Learning, e-Business, Enterprise Information Systems, and e-Government (EEE 2014), Las Vegas, USA (2014)

    Google Scholar 

  30. Qaffas, A.A., Cristea, A.I.: How to create an E-Advertising adaptation strategy: the AEADS approach. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 171–178. Springer, Heidelberg (2014)

    Google Scholar 

  31. Benaki, E., Karkaletsis, A., Spyropoulos, D.: User modeling in WWW: the UMIE prototype. In: Proceedings of the Workshop Adaptive Systems and User Modeling on the World Wide Web, 6th International Conference on User Modelling UM, vol. 97 (1997)

    Google Scholar 

  32. McIver, J., Carmines, E.G.: Unidimensional Scaling. Sage, Beverly Hills (1981)

    Google Scholar 

  33. Gliem, J.A., Gliem, R.R.: Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. In: Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education (2003)

    Google Scholar 

  34. Kazienko, P., Adamski, M.: Personalized web advertising method. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 146–155. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. De Bra, P., Smits, D., Van Der Sluijs, K., Cristea, A., Hendrix, M.: GRAPPLE: personalization and adaptation in learning management systems. In: World Conference on Educational Multimedia, Hypermedia and Telecommunications, vol. 2010, pp. 3029–3038 (2010)

    Google Scholar 

  36. Stash, N., Cristea, A.I., De Bra, P.: Adaptation languages as vehicles of explicit intelligence in adaptive hypermedia. Int. J. Continuing Eng. Educ. Life Long Learn. 17, 319–336 (2007)

    Article  Google Scholar 

  37. Al Qudah, D.A., Cristea, A.I., Hadzidedic, S., AL-Saqqa, S., Rodan, A., Yang, W.: Personalized E-advertisement experience: recommending user targeted Ads. In: 12th International Conference on e-Business Engineering, Bejing, China (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa A. Qaffas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Qaffas, A.A., Cristea, A.I. (2016). Large Scale Evaluation of an Adaptive E-Advertising User Model. In: Obaidat, M., Lorenz, P. (eds) E-Business and Telecommunications. ICETE 2015. Communications in Computer and Information Science, vol 585. Springer, Cham. https://doi.org/10.1007/978-3-319-30222-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30222-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30221-8

  • Online ISBN: 978-3-319-30222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics