What NEKST?—Semantic Search Engine for Polish Internet | SpringerLink
Skip to main content

What NEKST?—Semantic Search Engine for Polish Internet

  • Chapter
  • First Online:
Challenging Problems and Solutions in Intelligent Systems

Abstract

We introduce a new semantic search engine, developed at our institute. Its unique feature is the automatic construction of semantic resources, like discovery of millions of facts, IS-A relations and automated generation of sentimental analysis dictionaries. We developed a new method of document categorization. The engine can be queried in natural language and possesses interfaces to be used not only by humans but also by machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciesielski, K., Czerski, D., Dramiński, M., Kłopotek, M., Wierzchoń, S., Sydow, M., Borkowski, P., Wajda, J., Chojnicki, S., Trojanowski, K.: Semantic Resources for Enhancing Search Engines 2012, 3 Polish Academy of Sciences Annual Report 2011

    Google Scholar 

  2. Ciesielski, K., Borkowski, P., Kłopotek, M., Trojanowski, K., Wysoki, K.: Wikipedia-Based Document Categorization. LNCS, vol. 7053, pp. 265–278. Springer, New York (2012)

    Google Scholar 

  3. Dramiński, M., Owczarczyk, B., Trojanowski, K., Czerski, D., Ciesielsdki, K., Kłopotek, M.: Stabilization of Users Priofiling Proceeded by Metaclustring of Web Pages. LNCS, vol. 7912, pp. 179–186. Springer, New York (2013)

    Google Scholar 

  4. Fountain, T., Lapata, M.: Taxonomy induction using hierarchical random graphs. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 466–476. Association for Computational Linguistics (2012)

    Google Scholar 

  5. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th Conference on Computational Linguistics - Volume 2, COLING’92, Stroudsburg, pp. 539–545. Association for Computational Linguistics (1992)

    Google Scholar 

  6. Kłopotek, M.: What is the Value of Information - Search engine Point of View. LNCS, vol. 8104, pp. 1–12. Springer, New York (2013)

    Google Scholar 

  7. Kłopotek, M.A., Wierzchoń, S.T., Ciesielski, K., Dramiński, M., Czerski, D.: Ocena wartości informacji hipertekstowej. Wydawnictwo Instytut Informatyki Uniwersytetu Śląskiego Systemy Wspomagania Decyzji, pp. 227–242 (2011)

    Google Scholar 

  8. Kłopotek, M.A., Wierzchoń, S.T., Ciesielski, K., Czerski, D., Dramiński, M.: Analiza semantyczna dokumentów dla wyszukiwarek internetowych. w: Alicja Wakulicz-Deja: Systemy Wspomagania Decyzji. Instytut Informatyki Uniwersytetu Śląskiego, Katowice. pp. 135–148 (2013)

    Google Scholar 

  9. Kłopotek, M., WSierzchoń, S., Czerski, D., Ciesielski, K., Dramniński, M.: A Calculus for Personalized PageRank. LNCS, vol. 7912, pp. 212–219. Springer, New York (2013)

    Google Scholar 

  10. Kozareva, Z.: Simple, fast and accurate taxonomy learning. Text Mining, pp. 41–62. Springer International Publishing, New York (2014)

    Google Scholar 

  11. Mironczuk, M., Czerski, D., Sydow, M., Klopotek, M.: Language-independent information extraction based on formal concept analysis. In: Proceedings of Second International Conference on Informatics, Applications (ICIA), pp. 323–329 (2013). ISBN 978-1-4673-5255-0

    Google Scholar 

  12. Sydow, M., Ciesielski, K., Wajda, J.: Introducing diversity to log-based query suggestions to deal with underspecified user queries. In: Proceedings of Joint International SIIS 2011 Conference, Revised Selected Papers, vol. 7053, pp. 251–264. LNCS/Springer (2012). ISBN 978-3-642-25260-0

    Google Scholar 

  13. Szmit, R.: Locality Sensitive Hashing for Similarity Search Using MapReduce on Large Scale Data. LNCS, vol. 7912, pp. 171–178. Springer, New York (2013)

    Google Scholar 

  14. Wierzchoń, S.T., Kłopotek, M.A., Ciesielski, K., Dramiński, M., Czerski, D.: Metody obliczeniowe dla wyznaczania wektora PageRank, Wydawnictwo Instytut Informatyki Uniwersytetu Śląskiego Systemy Wspomagania Decyzji, pp. 243–252 (2011)

    Google Scholar 

  15. Wierzchoń, S., Kłopotek, M.A., Ciesielski, K.: Community detection with spectral optimization. Security, Intelligent Information Systems XVI. In: Proceedings of the International SIIS:2011

    Google Scholar 

  16. Wierzchoń, S.T., Kłopotek, M., Ciesielski, K., Czerski, D., Dramiński, M.: Accelerating PageRank computations. Control Cybern. 40(2), 377–400 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Wu, Q., Burges, C.J.C., Svore, K.M., Gao, J.: Ranking, boosting, and model adaptation. Technical report MSR-TR-2008-109, Microsoft Research (2008)

    Google Scholar 

  18. Wu, W., Li, H., Wang, H., Zhu, K.: Probase: a probabilistic taxonomy for text understanding. In: ACM International Conference on Management of Data (SIGMOD), pp. 481–492 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Czerski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Czerski, D., Ciesielski, K., Dramiński, M., Kłopotek, M., Łoziński, P., Wierzchoń, S. (2016). What NEKST?—Semantic Search Engine for Polish Internet. In: Trė, G., Grzegorzewski, P., Kacprzyk, J., Owsiński, J., Penczek, W., Zadrożny, S. (eds) Challenging Problems and Solutions in Intelligent Systems. Studies in Computational Intelligence, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-30165-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30165-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30164-8

  • Online ISBN: 978-3-319-30165-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics