IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter | SpringerLink
Skip to main content

IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9606))

Included in the following conference series:

Abstract

QC-MDPC McEliece attracted significant attention as promising alternative public-key encryption scheme believed to be resistant against quantum computing attacks. Compared to binary Goppa codes, it achieves practical key sizes and was shown to perform well on constrained platforms such as embedded microcontrollers and FPGAs.

However, so far none of the published QC-MDPC McEliece/Niederreiter implementations provide indistinguishability under chosen plaintext or chosen ciphertext attacks. Common ways for the McEliece and Niederreiter encryption schemes to achieve IND-CPA/IND-CCA security are surrounding constructions that convert them into secured schemes. In this work we take a slightly different approach presenting (1) an efficient implementation of QC-MDPC Niederreiter for ARM Cortex-M4 microcontrollers and (2) the first implementation of Persichetti’s IND-CCA hybrid encryption scheme from PQCrypto’13 instantiated with QC-MDPC Niederreiter for key encapsulation and AES-CBC/AES-CMAC for data encapsulation. Both implementations achieve practical performance for embedded microcontrollers, at 80-bit security hybrid encryption takes 16.5 ms, decryption 111 ms and key-generation 386.4 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See NSA announcement published at https://www.nsa.gov/ia/programs/suiteb_cryptography/.

  2. 2.

    80-bit: \(d_v=45\), 128-bit: \(d_v=71\). Note that \(n_0=2\) and w is even for the parameters used in this paper.

  3. 3.

    The bit-flipping thresholds used in Algorithm 1 are precomputed from the code parameters as proposed in [7].

  4. 4.

    In [20], the DEM is simply assumed to be a fixed length one-time pad of the size of m combined with a standardized MAC. Hence, \(\text {Enc}^\text {SE}_{k_1}(m)=m\,\oplus \,k_1\) and \(\text {Dec}^\text {SE}_{k_1}(T)=T\,\oplus \,k_1\) with \(m,T,k_1\) having the same fixed length.

  5. 5.

    We do not implement constant weight encoding since it is not needed in the hybrid encryption scheme. Encrypting a message \(m \in \mathbb {Z}/\left( {\begin{array}{c}n\\ t\end{array}}\right) \mathbb {Z}\) requires to encode it into an error-vector \(e \in \mathbb {F}_2^n\) of weight \({{\mathrm{wt}}}(e) = t\) and to reverse the encoding after decryption.

  6. 6.

    We found the number of iterations experimentally and set it to five, in line with iteration counts reported in [13, 14].

  7. 7.

    16 bit are sufficient to store the position for both 80-bit and 128-bit security.

References

  1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, 19–22 October 1997, Miami Beach, Florida, USA, pp. 394–403. IEEE Computer Society (1997)

    Google Scholar 

  2. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

    Article  MATH  Google Scholar 

  3. Biasi, F., Barreto, P., Misoczki, R., Ruggiero, W.: Scaling efficient code-based cryptosystems for embedded platforms. J. Crypt. Eng. 4, 1–12 (2014)

    Article  Google Scholar 

  4. Cayrel, P.-L., Hoffmann, G., Persichetti, E.: Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 138–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for embedded devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 49–64. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theor. 8(1), 21–28 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heyse, S.: Implementation of McEliece based on quasi-dyadic Goppa codes for embedded devices. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 143–162. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  11. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems-Conversions for McEliece. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC McEliece encryption on reconfigurable devices. In: DATE, pp. 1–6. IEEE (2014)

    Google Scholar 

  13. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Heidelberg (2014)

    Google Scholar 

  14. von Maurich, I., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece encryption. ACM Trans. Embedded Comput. Syst. 14(3), 1–27 (2015)

    Article  Google Scholar 

  15. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978)

    Google Scholar 

  16. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: ISIT, pp. 2069–2073. IEEE (2013)

    Google Scholar 

  17. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theor./Problemy Upravlen. Teor Inform. 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Crypt. 49(1–3), 289–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perlner, R.: Optimizing information set decoding algorithms to attack cyclosymmetric MDPC codes. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 220–228. Springer, Heidelberg (2014)

    Google Scholar 

  20. Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. STMicroelectronics: STM32F417VG High-performance foundation line, ARM Cortex-M4 core with DSP and FPU, 1 Mbyte Flash, 168 MHz CPU, ART Accelerator, Ethernet, FSMC, HW crypto - STMicroelectronics (2015). http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252139

  23. Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130–501 (2012)

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 645622 (PQCRYPTO). The authors would like to thank Rafael Misoczki for helpful feedback and comments when starting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo von Maurich .

Editor information

Editors and Affiliations

Appendix

Appendix

figure a
Table 1. Performance and code size of our implementations of QC-MDPC Niederreiter using \(Dec_B\) compared to other implementations of similar public-key encryption schemes on embedded microcontrollers. We abbreviate Niederreiter (NR) and McEliece (McE). As code is reused in the combined implementation its size is smaller than the sum of the three separate implementations.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

von Maurich, I., Heberle, L., Güneysu, T. (2016). IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter. In: Takagi, T. (eds) Post-Quantum Cryptography. PQCrypto 2016. Lecture Notes in Computer Science(), vol 9606. Springer, Cham. https://doi.org/10.1007/978-3-319-29360-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29360-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29359-2

  • Online ISBN: 978-3-319-29360-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics