Dimension Enrichment with Factual Data During the Design of Multidimensional Models: Application to Bird Biodiversity | SpringerLink
Skip to main content

Dimension Enrichment with Factual Data During the Design of Multidimensional Models: Application to Bird Biodiversity

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2015)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 241))

Included in the following conference series:

  • 641 Accesses

Abstract

Data warehouses (DW) and OLAP systems are technologies allowing the on-line analysis of huge volume of data according to decision-makers’ needs. Designing DW involves taking into account functional requirements and data sources (mixed design methodology) [1]. But, for complex applications, existing automatic design methodologies seem inefficient. In some cases, decision-makers need querying, as a dimension, data which have been defined as facts by actual automatic mixed approachs. Therefore, in this paper, we offer a new mixed refinement methodology relevant to constellation multidimensional schema. The proposed methodolgy allows to decision-makers to enrich a dimension with factual data. In order to validate our theoretical proposals, we have implemented an enrichment tool and we have tested it on a real case study from bird biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, the notation \((f_{i},d_{j})\) represents the arc from fact node \(f_{i}\) to dimensional node \(d_{j}\).

  2. 2.

    ‘*’ means ‘all members of the dimension’.

  3. 3.

    http://www.mathworks.com.

  4. 4.

    http://www.postgresql.org.

  5. 5.

    http://community.pentaho.com/projects/mondrian/.

  6. 6.

    http://community.meteorite.bi/.

  7. 7.

    http://www.sigloire.fr/.

References

  1. Phipps, C., Davis, K.C.: Automating data warehouse conceptual schema design and evaluation. In: Proceedings of the 4th International Workshop on Design and Management of Data Warehouses (DMDW), vol. 2 (2002)

    Google Scholar 

  2. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. Wiley, New York (1996)

    Google Scholar 

  3. Romero, O., Abello, A.: A survey of multidimensional modeling methodologies. Int. J. Data Warehouse. Min. 5, 1–23 (2009)

    Article  Google Scholar 

  4. Mahboubi, H., Ralaivao, J.C., Loudcher, S., Boussaïd, O., Bentayeb, F., Darmont, J., et al.: X-WACoDa: an XML-based approach for warehousing and analyzing complex data. In: Data Warehousing Design and Advanced Engineering Applications: Methods for Complex Construction, pp. 38–54 (2009)

    Google Scholar 

  5. Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional structure in relational data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Favre, C., Bentayeb, F., Boussaid, O.: A knowledge-driven data warehouse model for analysis evolution. Frontiers Artif. Intell. Appl. 143, 271 (2006)

    Google Scholar 

  7. Sautot, L., Faivre, B., Journaux, L., Molin, P.: The hierarchical agglomerative clustering with gower index: a methodology for automatic design of OLAP cube in ecological data processing context. Ecol. Inf. 26, 217–230 (2014) (in Press)

    Google Scholar 

  8. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Ore: An iterative approach to the design and evolution of multi-dimensional schemas. In: Proceedings of the Fifteenth International Workshop on Data Warehousing and OLAP, DOLAP 2012, pp. 1–8. ACM, New York (2012)

    Google Scholar 

  9. Romero, O., Abello, A.: Automatic validation of requirements to support multidimensional design. Data Knowl. Eng. 69, 917–942 (2010)

    Article  Google Scholar 

  10. Carmè, A., Mazon, J.N., Rizzi, S.: A model-driven heuristic approach for detecting multidimensional facts in relational data sources. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 13–24. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Nguyen, T.B., Tjoa, A.M., Wagner, R.R.: An object oriented multidimensional data model for OLAP. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 69–82. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Messaoud, R.B., Boussaid, O., Rabaséda, S.: A new OLAP aggregation based on the AHC technique. In: DOLAP 2004, ACM Seventh International Workshop on Data Warehousing and OLAP, pp. 65–72 (2004)

    Google Scholar 

  13. Bentayeb, F.: K-means based approach for OLAP dimension updates. In: 10th International Conference on Enterprise Information Systems (ICEIS), pp. 531–534 (2008)

    Google Scholar 

  14. Leonhardi, B., Mitschang, B., Pulido, R., Sieb, C., Wurst, M.: Augmenting OLAP exploration with dynamic advanced analytics. In: 13th International Conference on Extending Database Technology (EDBT 2010) (2010)

    Google Scholar 

  15. Ceci, M., Cuzzocrea, A., Malerba, D.: OLAP over continuous domains via density-based hierarchical clustering. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 559–570. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Sautot, L., Bimonte, S., Journaux, L., Faivre, B.: A methodology and tool for rapid prototyping of data warehouses using data mining: application to birds biodiversity. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748, pp. 250–257. Springer, Heidelberg (2014)

    Google Scholar 

  17. Arora, M., Gosain, A.: Schema evolution for data warehouse: a survey. Int. J. Comput. Appl. (0975–8887) 22, 6–14 (2011)

    Google Scholar 

  18. Subotic, D., Poscic, P., Jovanovic, V.: Data warehouse schema evolution: state of the art. In: Proceedings of the Central European Conference on Information and Intelligent Systems, pp. 18–25 (2014)

    Google Scholar 

  19. Legube, B., Merlet, N.: Les indicateurs biologiques de la qualité de l’eau. In: L’analyse de l’eau. 9e edn., pp. 865–962. Dunod (2009)

    Google Scholar 

  20. Blondel, J., Ferry, C., Frochot, B.: Point counts with unlimited distance. In: Ralph, C.J., Scott, J.M. (eds.) Estimating Numbers of Terrestrial Birds. Studies in Avian Biology. vol. 6, pp. 414–420 (1981)

    Google Scholar 

  21. I.B.C.C.: Censuring breeding bird by the I.P.A. method. Pol. Ecol. Stud. 3, 15–17 (1977)

    Google Scholar 

  22. Miquel, M., Bédard, Y., Brisebois, A., Pouliot, J., Marchand, P., Brodeur, J.: Modeling multi-dimensional spatio-temporal data werehouses in a context of evolving specifications. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 34, 142–147 (2002)

    Google Scholar 

  23. Lenz, H.J., Thalheim, B.: A formal framework of aggregation for the OLAP-OLTP model. J. Univ. Comput. Sci. 15, 273–303 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Briand, L.C., Morasca, S., Basili, V.R.: An operational process for goal-driven definition of measures. IEEE Trans. Softw. Eng. 28, 1106–1125 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Data acquisition received financial support from the FEDER Loire, Etablissement Public Loire, DREAL de Bassin Centre, the Région Bourgogne (PARI, Projet Agrale 5) and the French Ministry of Agriculture. We also thank heartily Pr. John Aldo Lee, from the Catholic University of Leuven, for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucile Sautot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sautot, L., Bimonte, S., Journaux, L., Faivre, B. (2015). Dimension Enrichment with Factual Data During the Design of Multidimensional Models: Application to Bird Biodiversity. In: Hammoudi, S., Maciaszek, L., Teniente, E., Camp, O., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2015. Lecture Notes in Business Information Processing, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-29133-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29133-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29132-1

  • Online ISBN: 978-3-319-29133-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics