Abstract
Myocardial infarction changes both the shape and motion of the heart. In this work, cardiac shape and motion features are extracted from shape models at ED and ES phases and combined to train a SVM classifier between myocardial infarcted cases and asymptomatic cases. Shape features are characterised by PCA coefficients of a shape model, whereas motion features include wall thickening and wall motion. Evaluated on the STACOM 2015 challenge dataset, the proposed method achieves a high accuracy of 97.5 % for classification, which shows that shape and motion features can be useful biomarkers for myocardial infarction, which provide complementary information to late-gadolinium MR assessment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sutton, M.G.S.J., Sharpe, N.: Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101(25), 2981–2988 (2000)
Mandapaka, S., DAgostino, R., Hundley, W.G.: Does late gadolinium enhancement predict cardiac events in patients with ischemic cardiomyopathy? Circulation 113(23), 2676–2678 (2006)
Medrano-Gracia, P., Cowan, B.R., Bluemke, D.A., Finn, J.P., Kadish, A.H., Lee, D.C., Lima, J.A.C., Suinesiaputra, A., Young, A.A.: Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies. J. Cardiovasc. Magn. Reson. 15, 80 (2013)
Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005)
Suinesiaputra, A., Frangi, A.F., Kaandorp, T., Lamb, H.J., Bax, J.J., Reiber, J., Lelieveldt, B.P.F.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28(4), 595–607 (2009)
Duchateau, N., Giraldeau, G., Gabrielli, L., Fernández-Armenta, J., Penela, D., Evertz, R., Mont, L., Brugada, J., Berruezo, A., Sitges, M., et al.: Quantification of local changes in myocardial motion by diffeomorphic registration via currents: Application to paced hypertrophic obstructive cardiomyopathy in 2D echocardiographic sequences. Med. Image Anal. 19(1), 203–219 (2015)
McLeod, K., Sermesant, M., Beerbaum, P., Pennec, X.: Spatio-temporal tensor decomposition of a polyaffine motion model for a better analysis of pathological left ventricular dynamics. In: MICCAI, pp. 501–508. Springer (2013)
Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Chung, J.D., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H.: The cardiac atlas project-an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)
Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., DellItalia, L.J.: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216(2), 597–602 (2000)
Petitjean, C., Rougon, N., Cluzel, P.: Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J. Cardiovasc. Magn. Reson. 7(2), 501–516 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bai, W., Oktay, O., Rueckert, D. (2016). Classification of Myocardial Infarcted Patients by Combining Shape and Motion Features. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2015. Lecture Notes in Computer Science(), vol 9534. Springer, Cham. https://doi.org/10.1007/978-3-319-28712-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-28712-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28711-9
Online ISBN: 978-3-319-28712-6
eBook Packages: Computer ScienceComputer Science (R0)