Impact of Virtual Machines Heterogeneity on Data Center Power Consumption in Data-Intensive Applications | SpringerLink
Skip to main content

Impact of Virtual Machines Heterogeneity on Data Center Power Consumption in Data-Intensive Applications

  • Conference paper
  • First Online:
Adaptive Resource Management and Scheduling for Cloud Computing (ARMS-CC 2015)

Abstract

Cloud computing data centers consume large amounts of energy. Furthermore, most of the energy is used inefficiently. Computational resources such as CPU, storage, and network consume a lot of power. A good balance between the computing resources is mandatory. In the context of data-intensive applications, a significant portion of energy is consumed just to keep virtual machines or to move data around without performing useful computation. Power consumption optimization requires identification of the inefficiencies in the underlying system. Based on the relation between server load and energy consumption, in this paper we study the energy efficiency, and the penalties in terms of power consumption that are introduced by different degrees of heterogeneity for a cluster of heterogeneous virtual machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Natural Resources Defense Council, America’s Data Centers Consuming and Wasting Growing Amounts of Energy. http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

  2. Barroso, L.A., Clidaras, J., Hlzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3), 1–154 (2013)

    Article  Google Scholar 

  3. Xiao, P., Hu, Z., Liu, D., Yan, G., Qu, X.: Virtual machine power measuring technique with bounded error in cloud environments. J. Netw. Comput. Appl. 36(2), 818–828 (2013)

    Article  Google Scholar 

  4. Enhanced Intel Speedstep Technology for the Intel Pentium M Processor. http://download.intel.com/design/network/papers/30117401.pdf

  5. AMD PowerNow! Technology. http://support.amd.com/TechDocs/24404a.pdf

  6. Cool ‘n’ Quiet Technology Installation Guide. http://www.amd.com/Documents/Cool_N_Quiet_Installation_Guide3.pdf

  7. Enhanced Intel SpeedStep. https://software.intel.com/en-us/articles/enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux

  8. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating systems. In: ACM SIGOPS Operating Systems Review, vol. 35, no. 5, pp. 89–102. ACM, October 2001

    Google Scholar 

  9. Goudarzi, H., Pedram, M.: Energy-efficient virtual machine replication and placement in a cloud computing system. In: 2012 IEEE 5th International Conference on Cloud computing (CLOUD), pp. 750–757. IEEE, June 2012

    Google Scholar 

  10. Khosravi, A., Garg, S.K., Buyya, R.: Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 317–328. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J. Supercomputing 61(1), 46–66 (2012)

    Article  Google Scholar 

  13. Lin, C.C., Liu, P., Wu, J.J.: Energy-aware virtual machine dynamic provision and scheduling for cloud computing. In: 2011 IEEE International Conference on Cloud computing (CLOUD), pp. 736–737. IEEE, July 2011

    Google Scholar 

  14. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing, pp. 26–33. IEEE Computer Society, September 2011

    Google Scholar 

  15. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing. research. microsoft.com (2011)

    Google Scholar 

  16. Kou, L.T., Markowsky, G.: Multidimensional bin packing algorithms. IBM J. Res. dev. 21(5), 443–448 (1977). ISO 690

    Article  MathSciNet  MATH  Google Scholar 

  17. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer US, USA (2010)

    Google Scholar 

  18. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolodziej, J., Khan, S.U., Xhafa, F.: Genetic algorithms for energy-aware scheduling in computational grids. In: 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 17–24. IEEE, October 2011

    Google Scholar 

  20. Sfrent, A., Pop, F.: Asymptotic scheduling for many task computing in big data platforms. Inf. Sci. 319, 71–91 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pop, F., Dobre, C., Cristea, V., Bessis, N., Xhafa, F., Barolli, L.: Deadline scheduling for aperiodic tasks in inter-cloud environments: a new approach to resource management. J. Supercomputing 71, 1–12 (2014)

    Google Scholar 

  22. Mobius, C., Dargie, W., Schill, A.: Power consumption estimation models for processors, virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25(6), 1600–1614 (2014)

    Article  Google Scholar 

  23. Figueiredo, J., Maciel, P., Callou, G., Tavares, E., Sousa, E., Silva, B.: Estimating reliability importance and total cost of acquisition for data center power infrastructures. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 421–426. IEEE, October 2011

    Google Scholar 

  24. Bohra, A.E., Chaudhary, V.: VMeter: power modelling for virtualized clouds. In: 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8. IEEE, April 2010

    Google Scholar 

  25. Berl, A., De Meer, H.: An energy consumption model for virtualized office environments. Future Gener. Comput. Syst. 27(8), 1047–1055 (2011)

    Article  Google Scholar 

  26. Lim, M. Y., Porterfield, A., Fowler, R.: SoftPower: fine-grain power estimations using performance counters. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pp. 308–311. ACM, June 2010

    Google Scholar 

  27. Bircher, W.L., John, L.K.: Complete system power estimation using processor performance events. IEEE Trans. Comput. 61(4), 563–577 (2012)

    Article  MathSciNet  Google Scholar 

  28. Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Gonzlez, M., Martorell, X., Ayguad, E.: Energy accounting for shared virtualized environments under DVFS using PMC-based power models. Future Gener. Comput. Syst. 28(2), 457–468 (2012). Chicago

    Article  Google Scholar 

  29. Aroca, J.A., Anta, A.F., Mosteiro, M.A., Thraves, C., Wang, L.: Power-efficient assignment of virtual machines to physical machines. In: Pop, F., Potop-Butucaru, M. (eds.) ARMS-CC 2014. LNCS, vol. 8907, pp. 70–87. Springer, Heidelberg (2014)

    Google Scholar 

  30. Microsoft Azure cloud computing platform. http://azure.microsoft.com/

  31. Mhedheb, Y., Jrad, F., Tao, J., Zhao, J., Kołodziej, J., Streit, A.: Load and thermal-aware VM scheduling on the cloud. In: Kołodziej, J., Di Martino, B., Talia, D., Xiong, K. (eds.) ICA3PP 2013, Part I. LNCS, vol. 8285, pp. 101–114. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kamola, M., Mincer, M.: Dynamic power management in energy-aware computer networks and data-intensive computing systems. Future Gener. Comput. Syst. 37, 284–296 (2014)

    Article  Google Scholar 

  33. Kolodziej, J., Szmajduch, M., Maqsood, T., Madani, S.A., Min-Allah, N., Khan, S.U.: Energy-aware grid scheduling of independent tasks and highly distributed data. In: 11th International Conference on Frontiers of Information Technology (FIT), pp. 211–216. IEEE, December 2013

    Google Scholar 

  34. Kolodziej, J., Szmajduch, M., Khan, S.U., et al.: Genetic-based solutions for independent batch scheduling in data grids. In: Proceedings of 27th European Conference on Modelling and Simulation, pp. 504–510 (2013)

    Google Scholar 

  35. Kolodziej, J., Khan, S.U.: Multi-level hierarchic genetic-based scheduling of independent jobs in dynamic heterogeneous grid environment. Inf. Sci. 214, 1–19 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The research presented in this paper is supported by the projects: CyberWater grant of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, project number 47/2012; clueFarm: Information system based on cloud services accessible through mobile devices, to increase product quality and business development farms - PN-II-PTPCCA-2013-4-0870. We would like to thank the reviewers for their time and expertise, constructive comments and valuable insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Negru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Negru, C., Mocanu, M., Cristea, V. (2015). Impact of Virtual Machines Heterogeneity on Data Center Power Consumption in Data-Intensive Applications. In: Pop, F., Potop-Butucaru, M. (eds) Adaptive Resource Management and Scheduling for Cloud Computing. ARMS-CC 2015. Lecture Notes in Computer Science(), vol 9438. Springer, Cham. https://doi.org/10.1007/978-3-319-28448-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28448-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28447-7

  • Online ISBN: 978-3-319-28448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics