Abstract
The Fourth Industrial Revolution and the consequent integration of the Internet of Things and Services into industrial processes increase the requirements of transport processes. Customer demanding same-day deliveries, shorter transit-times, individual qualities of shipments, and higher amounts of small size orders raise the complexity and dynamics in logistics. In these highly dynamic environments, multiagent systems (MAS) and multiagent-based simulation (MASB) offer a suitable approach to handle the complexity and to provide the required flexibility, robustness, as well as customized behavior. This article focuses on the impact and the relevance of shortest-path queries in MAS and MABS. It compares the application of state-of-the-art algorithms and investigates different modeling approaches for efficient and concurrent shortest-path searches. The results prove that the application of a highly efficient algorithm such as hub labeling with contraction hierarchies is an essential key component in the agent-based control of dynamic transport processes. Moreover, the results reveal that choosing a modeling approach which slightly restricts the agents’ autonomy increases significantly the runtime performance without losing the advantages of multiagent systems. This allows for applying MAS to solve large scale real-world transport problems and for performing MABS with low hardware requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
http://www.openstreetmap.org (cited: 22.04.15).
- 2.
In the experiment a single routing agent maintains a the shortest-path algorithm (see next Section).
- 3.
Note that PlaSMA extends JADE. Thus, each static variable is only visible to the JVM. In distributed simulations on multiple machines, each machine requires its own static routing algorithm.
References
Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)
Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)
Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., Müller, J.P.: A scalable runtime platform for multiagent-based simulation. Technical report IfI-14-02, TU Clausthal (2014)
Barbucha, D., Jedrzejowicz, P.: Multi-agent platform for solving the dynamic vehicle routing problem. In: Proceedings of the Eleventh International IEEE Conference on Intelligent Transportation Systems, pp. 517–522 (2008)
Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-dependent contraction hierarchies and approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 166–177. Springer, Heidelberg (2010)
Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing speed-up techniques is hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)
Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)
Bürckert, H.J., Fischer, K., Vierke, G.: Holonic transport scheduling with teletruck. Appl. Artif. Intell. 14(7), 697–725 (2000)
Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976)
Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
Dorer, K., Calisti, M.: An adaptive solution to dynamic transport optimization. In: Proceedings of the Fourth International Joint Conference on Autonomous and Multiagent Systems, AAMAS 2005, pp. 45–51. ACM, New York (2005)
Edelkamp, S., Gath, M.: Optimal decision making in agent-based autonomous groupage traffic. In: Filipe, J., Fred, A.L.N. (eds.) Proceedings of the Fifth International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 248–254. SciTePress, Barcelona (2013)
Edelkamp, S., Gath, M.: Solving Single-vehicle pickup-and-delivery problems with time windows and capacity constraints using nested Monte-Carlo search. In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) Proceedings of the Sixth International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 22–33. SciTePress, Angers, France (2014)
Fischer, K., Müller, J.P., Pischel, M.: Cooperative transportation scheduling: an application domain for DAI. J. Appl. Artif. Intell. 10(1), 1–33 (1996)
Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)
Gamma, E., Johnson, E.R., Helm, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)
Gath, M., Herzog, O., Edelkamp, S.: Autonomous and flexible multiagent systems enhance transport logistics. In: 2014 11th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), pp. 1–6, October 2014
Gath, M., Edelkamp, S., Herzog, O.: Agent-based dispatching enables autonomous groupage traffic. J. Artif. Intell. Soft Comput. Res. (JAISCR) 3(1), 27–42 (2013)
Gehrke, J.D., Schuldt, A., Werner, S.: Quality Criteria for multiagent-based simulations with conservative synchronisation. In: Rabe, M. (ed.) 13th ASIM Dedicated Conference on Simulation in Production and Logistics, pp. 545–554. Citeseer, Fraunhofer IRB Verlag, Stuttgart (2008)
Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)
Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)
Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real time scheduling system for taxi companies. In: Proceedings of the Eighth International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, pp. 29–36 (2009)
Greulich, C., Edelkamp, S., Gath, M.: Agent-based multimodal transport planning in dynamic environments. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS, vol. 8077, pp. 74–85. Springer, Heidelberg (2013)
Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O., Sitharam, T.G.: Enhanced shortest path computation for multiagent-based intermodal transport planning in dynamic environments. In: Filipe, J., Fred, A.L.N. (eds.) 5th International Conference on Agents and Artificial Intelligence (ICAART), vol. 2, pp. 324–329. SciTePress, Barcelona, 15–18 February 2013
Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA technology: multi-agent systems for industrial logistics. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 60–66. ACM, New York (2005)
Himoff, J., Rzevski, G., Skobelev, P.: Magenta technology multi-agent logistics i-scheduler for road transportation. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 1514–1521. ACM, New York (2006)
Jennings, N.R.: An agent-based approach for building complex software systems. Commun. ACM 44(4), 35–41 (2001)
Jennings, N.R., Wooldridge, M.: Applications of Intelligent Agents. Springer-Verlag, New York (1998)
Kalina, P., Vokřínek, J.: Parallel solver for vehicle routing and pickup and delivery problems with time windows based on agent negotiation. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1558–1563 (2012)
Kohout, R., Erol, K.: In-time agent-based vehicle routing with a stochastic improvement heuristic. In: Proceedings of the 16th Conference on Artificial Intelligence and the 11th on Innovative Applications of Artificial Intelligence (AAAI/IAAI 1999), pp. 864–869. AAAI Press, Menlo Park (1999)
Leong, H.W., Liu, M.: A multi-agent algorithm for vehicle routing problem with time window. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 106–111. ACM, New York (2006)
van Lon, R.R., Holvoet, T., Vanden Berghe, G., Wenseleers, T., Branke, J.: Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 331–336. ACM, New York (2012)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. California, USA (1967)
Mahr, T., Srour, J., de Weerdt, M., Zuidwijk, R.: Can agents easure up? A comparative study of an agent-based and on-line optimization approach for a Drayage problem with uncertainty. Transp. Res. Part C Emerg. Technol. 18(1), 99–119 (2010)
Mes, M., van der Heijden, M., van Harten, A.: Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. Eur. J. Oper. Res. 181(1), 59–75 (2007)
Müller, H.J.: Towards agent systems engineering. Data Knowl. Eng. 23(3), 217–245 (1997)
Perugini, D., Lambert, D., Sterling, L., Pearce, A.: A distributed agent approach to global transportation scheduling. In: Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT 2003), pp. 18–24 (2003)
Sano, Y., Kadono, Y., Fukuta, N.: A performance optimization support framework for GPU-based traffic simulations with negotiating agents. In: Proceedings of 7th International Workshop on Agent-based Complex Automated Negotiations (ACAN2014) (2014)
Thangiah, S.R., Shmygelska, O., Mennell, W.: An agent architecture for vehicle routing problems. In: Proceedings of the 2001 ACM Symposium on Applied Computing, SAC 2001, pp. 517–521. ACM, New York (2001)
Vokřínek, J., Komenda, A., Pěchouček, M.: Agents towards vehicle routing problems. In: Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, vol. 1, pp. 773–780. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2010)
Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards ontology-based multiagent simulations: the PlaSMA approach. In: Bargiela, A., Azam Ali, S., Crowley, D., Kerckhoffs, E.J. (eds.) Proceedings of the European Conference on Modelling and Simulation, pp. 50–56. ECMS 2010 (2010)
Zhenggang, D., Linning, C., Li, Z.: Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Sci. Technol. 14(3), 407–412 (2009)
Acknowledgments
The presented research was funded by the German Research Foundation (DFG) within the project Autonomous Courier and Express Services (HE 989/14-1) at the University of Bremen, Germany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gath, M., Herzog, O., Vaske, M. (2015). Concurrent and Distributed Shortest-Path Searches in Multiagent-Based Transport Systems. In: Nguyen, N., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Transactions on Computational Collective Intelligence XX . Lecture Notes in Computer Science(), vol 9420. Springer, Cham. https://doi.org/10.1007/978-3-319-27543-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-27543-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27542-0
Online ISBN: 978-3-319-27543-7
eBook Packages: Computer ScienceComputer Science (R0)