Concurrent and Distributed Shortest-Path Searches in Multiagent-Based Transport Systems | SpringerLink
Skip to main content

Concurrent and Distributed Shortest-Path Searches in Multiagent-Based Transport Systems

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XX

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9420))

  • 486 Accesses

Abstract

The Fourth Industrial Revolution and the consequent integration of the Internet of Things and Services into industrial processes increase the requirements of transport processes. Customer demanding same-day deliveries, shorter transit-times, individual qualities of shipments, and higher amounts of small size orders raise the complexity and dynamics in logistics. In these highly dynamic environments, multiagent systems (MAS) and multiagent-based simulation (MASB) offer a suitable approach to handle the complexity and to provide the required flexibility, robustness, as well as customized behavior. This article focuses on the impact and the relevance of shortest-path queries in MAS and MABS. It compares the application of state-of-the-art algorithms and investigates different modeling approaches for efficient and concurrent shortest-path searches. The results prove that the application of a highly efficient algorithm such as hub labeling with contraction hierarchies is an essential key component in the agent-based control of dynamic transport processes. Moreover, the results reveal that choosing a modeling approach which slightly restricts the agents’ autonomy increases significantly the runtime performance without losing the advantages of multiagent systems. This allows for applying MAS to solve large scale real-world transport problems and for performing MABS with low hardware requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.openstreetmap.org (cited: 22.04.15).

  2. 2.

    In the experiment a single routing agent maintains a the shortest-path algorithm (see next Section).

  3. 3.

    Note that PlaSMA extends JADE. Thus, each static variable is only visible to the JVM. In distributed simulations on multiple machines, each machine requires its own static routing algorithm.

References

  1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Ahlbrecht, T., Dix, J., Köster, M., Kraus, P., Müller, J.P.: A scalable runtime platform for multiagent-based simulation. Technical report IfI-14-02, TU Clausthal (2014)

    Google Scholar 

  4. Barbucha, D., Jedrzejowicz, P.: Multi-agent platform for solving the dynamic vehicle routing problem. In: Proceedings of the Eleventh International IEEE Conference on Intelligent Transportation Systems, pp. 517–522 (2008)

    Google Scholar 

  5. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-dependent contraction hierarchies and approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 166–177. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing speed-up techniques is hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)

    Book  Google Scholar 

  8. Bürckert, H.J., Fischer, K., Vierke, G.: Holonic transport scheduling with teletruck. Appl. Artif. Intell. 14(7), 697–725 (2000)

    Article  Google Scholar 

  9. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976)

    Google Scholar 

  10. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dorer, K., Calisti, M.: An adaptive solution to dynamic transport optimization. In: Proceedings of the Fourth International Joint Conference on Autonomous and Multiagent Systems, AAMAS 2005, pp. 45–51. ACM, New York (2005)

    Google Scholar 

  12. Edelkamp, S., Gath, M.: Optimal decision making in agent-based autonomous groupage traffic. In: Filipe, J., Fred, A.L.N. (eds.) Proceedings of the Fifth International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 248–254. SciTePress, Barcelona (2013)

    Google Scholar 

  13. Edelkamp, S., Gath, M.: Solving Single-vehicle pickup-and-delivery problems with time windows and capacity constraints using nested Monte-Carlo search. In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds.) Proceedings of the Sixth International Conference on Agents and Artificial Intelligence (ICAART), vol. 1, pp. 22–33. SciTePress, Angers, France (2014)

    Google Scholar 

  14. Fischer, K., Müller, J.P., Pischel, M.: Cooperative transportation scheduling: an application domain for DAI. J. Appl. Artif. Intell. 10(1), 1–33 (1996)

    Article  Google Scholar 

  15. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)

    Article  MathSciNet  Google Scholar 

  16. Gamma, E., Johnson, E.R., Helm, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

    Google Scholar 

  17. Gath, M., Herzog, O., Edelkamp, S.: Autonomous and flexible multiagent systems enhance transport logistics. In: 2014 11th International Conference Expo on Emerging Technologies for a Smarter World (CEWIT), pp. 1–6, October 2014

    Google Scholar 

  18. Gath, M., Edelkamp, S., Herzog, O.: Agent-based dispatching enables autonomous groupage traffic. J. Artif. Intell. Soft Comput. Res. (JAISCR) 3(1), 27–42 (2013)

    Google Scholar 

  19. Gehrke, J.D., Schuldt, A., Werner, S.: Quality Criteria for multiagent-based simulations with conservative synchronisation. In: Rabe, M. (ed.) 13th ASIM Dedicated Conference on Simulation in Production and Logistics, pp. 545–554. Citeseer, Fraunhofer IRB Verlag, Stuttgart (2008)

    Google Scholar 

  20. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

    Article  Google Scholar 

  22. Glaschenko, A., Ivaschenko, A., Rzevski, G., Skobelev, P.: Multi-agent real time scheduling system for taxi companies. In: Proceedings of the Eighth International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, pp. 29–36 (2009)

    Google Scholar 

  23. Greulich, C., Edelkamp, S., Gath, M.: Agent-based multimodal transport planning in dynamic environments. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS, vol. 8077, pp. 74–85. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O., Sitharam, T.G.: Enhanced shortest path computation for multiagent-based intermodal transport planning in dynamic environments. In: Filipe, J., Fred, A.L.N. (eds.) 5th International Conference on Agents and Artificial Intelligence (ICAART), vol. 2, pp. 324–329. SciTePress, Barcelona, 15–18 February 2013

    Google Scholar 

  25. Himoff, J., Skobelev, P., Wooldridge, M.: MAGENTA technology: multi-agent systems for industrial logistics. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 60–66. ACM, New York (2005)

    Google Scholar 

  26. Himoff, J., Rzevski, G., Skobelev, P.: Magenta technology multi-agent logistics i-scheduler for road transportation. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 1514–1521. ACM, New York (2006)

    Google Scholar 

  27. Jennings, N.R.: An agent-based approach for building complex software systems. Commun. ACM 44(4), 35–41 (2001)

    Article  Google Scholar 

  28. Jennings, N.R., Wooldridge, M.: Applications of Intelligent Agents. Springer-Verlag, New York (1998)

    Book  Google Scholar 

  29. Kalina, P., Vokřínek, J.: Parallel solver for vehicle routing and pickup and delivery problems with time windows based on agent negotiation. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1558–1563 (2012)

    Google Scholar 

  30. Kohout, R., Erol, K.: In-time agent-based vehicle routing with a stochastic improvement heuristic. In: Proceedings of the 16th Conference on Artificial Intelligence and the 11th on Innovative Applications of Artificial Intelligence (AAAI/IAAI 1999), pp. 864–869. AAAI Press, Menlo Park (1999)

    Google Scholar 

  31. Leong, H.W., Liu, M.: A multi-agent algorithm for vehicle routing problem with time window. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 106–111. ACM, New York (2006)

    Google Scholar 

  32. van Lon, R.R., Holvoet, T., Vanden Berghe, G., Wenseleers, T., Branke, J.: Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 331–336. ACM, New York (2012)

    Google Scholar 

  33. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. California, USA (1967)

    Google Scholar 

  34. Mahr, T., Srour, J., de Weerdt, M., Zuidwijk, R.: Can agents easure up? A comparative study of an agent-based and on-line optimization approach for a Drayage problem with uncertainty. Transp. Res. Part C Emerg. Technol. 18(1), 99–119 (2010)

    Article  Google Scholar 

  35. Mes, M., van der Heijden, M., van Harten, A.: Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems. Eur. J. Oper. Res. 181(1), 59–75 (2007)

    Article  MATH  Google Scholar 

  36. Müller, H.J.: Towards agent systems engineering. Data Knowl. Eng. 23(3), 217–245 (1997)

    Article  MATH  Google Scholar 

  37. Perugini, D., Lambert, D., Sterling, L., Pearce, A.: A distributed agent approach to global transportation scheduling. In: Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT 2003), pp. 18–24 (2003)

    Google Scholar 

  38. Sano, Y., Kadono, Y., Fukuta, N.: A performance optimization support framework for GPU-based traffic simulations with negotiating agents. In: Proceedings of 7th International Workshop on Agent-based Complex Automated Negotiations (ACAN2014) (2014)

    Google Scholar 

  39. Thangiah, S.R., Shmygelska, O., Mennell, W.: An agent architecture for vehicle routing problems. In: Proceedings of the 2001 ACM Symposium on Applied Computing, SAC 2001, pp. 517–521. ACM, New York (2001)

    Google Scholar 

  40. Vokřínek, J., Komenda, A., Pěchouček, M.: Agents towards vehicle routing problems. In: Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2010, vol. 1, pp. 773–780. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2010)

    Google Scholar 

  41. Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., Malaka, R.: Towards ontology-based multiagent simulations: the PlaSMA approach. In: Bargiela, A., Azam Ali, S., Crowley, D., Kerckhoffs, E.J. (eds.) Proceedings of the European Conference on Modelling and Simulation, pp. 50–56. ECMS 2010 (2010)

    Google Scholar 

  42. Zhenggang, D., Linning, C., Li, Z.: Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Sci. Technol. 14(3), 407–412 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The presented research was funded by the German Research Foundation (DFG) within the project Autonomous Courier and Express Services (HE 989/14-1) at the University of Bremen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gath, M., Herzog, O., Vaske, M. (2015). Concurrent and Distributed Shortest-Path Searches in Multiagent-Based Transport Systems. In: Nguyen, N., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Transactions on Computational Collective Intelligence XX . Lecture Notes in Computer Science(), vol 9420. Springer, Cham. https://doi.org/10.1007/978-3-319-27543-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27543-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27542-0

  • Online ISBN: 978-3-319-27543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics