Discrete Geodesics and Cellular Automata | SpringerLink
Skip to main content

Discrete Geodesics and Cellular Automata

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9477))

Included in the following conference series:

Abstract

This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The proposed notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation—as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrighi, P., Dowek, G.: The physical Church-Turing thesis and the principles of quantum theory. Int. J. Found. of Comput. Sci. 23, 1131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrighi, P., Dowek, G.: Discrete geodesics. arXiv Pre-print, with program available when downloading source (2015)

    Google Scholar 

  3. Arrighi, P., Facchini, S., Forets, M.: Quantum walks in curved spacetime (2015). Pre-print arXiv:1505.07023

  4. Brewin, L.: Particle paths in a schwarzschild spacetime via the regge calculus. Class. Quantum Gravity 10(9), 1803 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cianfrani, F., Montani, G.: Dirac equations in curved space-time vs. papapetrou spinning particles. EPL (Europhysics Letters) 84(3), 30008 (2008)

    Article  Google Scholar 

  6. Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks as massless dirac fermions in curved space-time. Phys. Rev. A 88(4), 042301 (2013)

    Article  Google Scholar 

  7. Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Phys. A: Stat. Mech. Appl. 397, 157–168 (2014)

    Article  MathSciNet  Google Scholar 

  8. d’Inverno, R.: Introducing Einstein’s Relatvity. Oxford University Press, USA (1899)

    Google Scholar 

  9. Gandy, R.: Church’s thesis and principles for mechanisms. In: Barwise, J., Keisler, H.J., Kunen, K. (eds.) The Kleene Symposium. North-Holland Publishing Company, Amsterdam (1980)

    Google Scholar 

  10. Lorenzi, M., Ayache, N., Pennec, X.: Schilds ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) Information Processing in Medical Imaging, pp. 463–474. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 2001 10, 357–514 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Martínez, D., Velho, L., Carvalho, P.C.: Computing geodesics on triangular meshes. Comput. Graph. 29(5), 667–675 (2005)

    Article  Google Scholar 

  13. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D.: Geodesic methods in computer vision and graphics. Found. Trends Comput. Graph. Vis. 5(3–4), 197–397 (2010)

    MATH  Google Scholar 

  15. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Discrete Differential Geometry: An Applied Introduction, SIGGRAPH 2006, p. 30 (2006)

    Google Scholar 

  16. Vincent, F.H., Gourgoulhon, E., Novak, J.: 3+1 geodesic equation and images in numerical spacetimes. Class. Quant. Gravity 29(24), 245005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Williams, R.M., Ellis, G.F.R.: Regge calculus and observations. i. formalism and applications to radial motion and circular orbits. Gen. Relativ. Gravit. 13(4), 361–395 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the ANR-12-BS02-007-01 TARMAC grant, the ANR-10-JCJC-0208 CausaQ grant, and the John Templeton Foundation, grant ID 15619. Pablo Arrighi benefited from a visitor status at the IXXI institute of Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Arrighi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Arrighi, P., Dowek, G. (2015). Discrete Geodesics and Cellular Automata. In: Dediu, AH., Magdalena, L., Martín-Vide, C. (eds) Theory and Practice of Natural Computing. TPNC 2015. Lecture Notes in Computer Science(), vol 9477. Springer, Cham. https://doi.org/10.1007/978-3-319-26841-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26841-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26840-8

  • Online ISBN: 978-3-319-26841-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics