Accurate Classification of ECG Patterns with Subject-Dependent Feature Vector | SpringerLink
Skip to main content

Accurate Classification of ECG Patterns with Subject-Dependent Feature Vector

  • Conference paper
  • First Online:
Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 403))

Abstract

Correct and accurate classification of ECG patterns in a long-term record requires optimal selection of feature vector. We propose a machine learning algorithm that learns from short randomly selected signal strips and, having an approval from a human operator, classifies all remaining patterns. We applied a genetic algorithm with aggressive mutation to select few most distinctive features of ECG signal. When applied to the MIT-BIH Arrhythmia Database records, the algorithm reduced the initial feature space of 57 elements to 3–5 features optimized for a particular subject. We also observe a significant reduction of misclassified beats percentage (from 2.7 % to 0.7 % in average for SVM classifier and three features) with regard to automatic correlation-based selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augustyniak, P.: The use of shape factors for heart beats classification in holterrecordings. Proc. Comput. Med. Zakop. 2–6(05), 47–52 (1997)

    Google Scholar 

  2. Augustyniak, P.: Adaptive discrete ECG representation—comparing variable depth decimation and continuous non-uniform sampling. Comput. Cardiol. 29, 165–168 (2005)

    Google Scholar 

  3. Augustyniak, P.: Wearable wireless heart rate monitor for continuous long-term variability studies. J. Electrocardiol. 44(2), 195–200 (2011)

    Article  Google Scholar 

  4. Chang, K.C., Lee, R.G., Wen, C., Yeh, M.F.: Comparison of similarity measures for clustering electrocardiogram complexes. Comput. Cardiol. 32, 759–762 (2005)

    Google Scholar 

  5. de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  6. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. ACM SIGART Bull. 63, 43–49 (1977)

    Google Scholar 

  7. Jaworek, J., Augustyniak, P.: A cardiac telerehabilitation application for mobile devices. Comput. Cardiol. 38, 241–244 (2011)

    Google Scholar 

  8. Jokić, S., Krčo, S., Delić, V., Sakač, D., Lukić, Z., Loncar-Turukalo, T.: An efficient approach for heartbeat classification. Comput. Cardiol. 2010(37), 991–994 (2010)

    Google Scholar 

  9. Kittler, J.: Feature set search algorithms. In: Pattern Recognition and Signal Processing, pp. 41–60. Sijthoff and Noordhoff, Alphen aan den Rijn (1978)

    Google Scholar 

  10. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: De Raedt, L., Bergadano, F. (eds.) Machine Learning: ECML-94, pp. 171–182. Springer, Berlin (1994)

    Google Scholar 

  11. Lemay, M., Jacquemet, V., Forclaz, A., Vesin, J.M., Kappenberger, L.: Spatiotemporal QRST cancellation method using separate QRS and T-Waves templates. Comput. Cardiol. 32, 611–614 (2005)

    Google Scholar 

  12. Llamedo-Soria, M., Martinez, J.P.: An ECG classification model based on multilead wavelet transform features. Comput. Cardiol. 34, 105–108 (2007)

    Google Scholar 

  13. Llamedo-Soria, M., Martinez, J.P.: Analysis of multidoma in features for ECG classification. Comput. Cardiol. 36, 561–564 (2009)

    Google Scholar 

  14. Llamedo, M., Khwaja, A., Martinez, J.P.: Analysis of 12-lead classification models for ECG classification. Comput. Cardiol. 37, 673–676 (2010)

    Google Scholar 

  15. Llamedo, M., Martinez, J.: Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58(3), 616–625 (2011)

    Google Scholar 

  16. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  17. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14(7), 710–732 (1992)

    Article  Google Scholar 

  18. Mensing, S., Bystricky, W., Safer, A.: Identifying and measuring representative QT intervals in predominantly non-normal ECGs. Comput. Cardiol. 33, 361–364 (2006)

    Google Scholar 

  19. Moody, G.B.: The MIT-BIH Arrhythmia Database CD-ROM, 3rd Edn. Harvard-MIT Division of Health Sciences and Technology, Cambridge (1997)

    Google Scholar 

  20. O’Dwyer, M., de Chazal, P., Reilly, R.I.: Beat classification for use in arrhythmia analysis. Comput. Cardiol. 27, 395–398 (2000)

    Google Scholar 

  21. Rejer, I.: Genetic algorithms in EEG feature selection for the classification of movements of the left and right hand. In: Proceedings CORES2013, pp. 579–589 (2013). doi:10.1007/978-3-319-00969-8-57

  22. Rejer, I.: Genetic algorithm with aggressive mutation for feature selection in BCI feature space pattern. Anal. Appl. (2014). doi:10.1007/s10044-014-0425-3

    Google Scholar 

  23. Rodriguez-Sotelo, J.L., Cuesta-Frau, D., Castellanos-Dominguez, G.: An improved method for unsupervised analysis of ECG beats based on WT features and J-Means clustering. Comput. Cardiol. 34, 581–584 (2007)

    Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via thelasso. J. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Vansteenkiste, E., Houben, R., Pizurica, A., Philips, W.: Classifying electrocardiogram peaks using new wavelet domain features. Comput. Cardiol. 35, 853–856 (2008)

    Google Scholar 

  26. Vapnik, V.N.: The Nature Of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This scientific work is supported by the AGH University of Science and Technology in year 2015 as a research project No. 11.11.120.612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Augustyniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Augustyniak, P. (2016). Accurate Classification of ECG Patterns with Subject-Dependent Feature Vector. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. Advances in Intelligent Systems and Computing, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-319-26227-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26227-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26225-3

  • Online ISBN: 978-3-319-26227-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics