Sentiment Word Identification with Sentiment Contextual Factors | SpringerLink
Skip to main content

Sentiment Word Identification with Sentiment Contextual Factors

  • Conference paper
  • First Online:
Web Technologies and Applications (APWeb 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9313))

Included in the following conference series:

  • 2863 Accesses

Abstract

Sentiment word identification (SWI) refers to the task of automatically identifying whether a given word expresses positive or negative opinion. SWI is a critical component of sentiment analysis technologies. Traditional sentiment word identification techniques become unqualified because they need seed sentiment words which leads to low robustness. In this paper, we consider SWI as a matrix factorization problem and propose three models for it. Instead of seed words, we exploit sentiment matching and sentiment consistency for modeling. Extensive experimental studies on three real-world datasets demonstrate that our models outperform the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bross, J., Ehrig, H.: Automatic construction of domain and aspect specific sentiment lexicons for customer review mining. In: CIKM, pp. 1077–1086 (2013)

    Google Scholar 

  2. Ding, X., Liu, B., Yu, P.: A holistic lexicon-based approach to opinion mining. In: WSDM, pp. 231–240 (2008)

    Google Scholar 

  3. Ganesan, K., Zhai, C.X., Viegas, E.: Micropinion generation: an unsupervised approach to generating ultra-concise summaries of opinions. In: WWW, pp. 869–878 (2012)

    Google Scholar 

  4. Golub, G., Reinsch, C.E.: Singular value decomposition and least squares solutions. Numerische Mathematik 14(5), 403–420 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: ACL, pp. 174–181 (1997)

    Google Scholar 

  6. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: 10th Proceeding of ACM SIGKDD, pp. 168–177 (2004)

    Google Scholar 

  7. Kamps, J., Marx, M., Mokken, R.J., De Rijke, M.: Using WordNet to measure semantic orientation of adjectives. In: LREC, pp. 1115–1118 (2004)

    Google Scholar 

  8. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  9. Liang, J.G., Zhou, X.F., Hu, Y., Guo, L., Bai, S.: CONR: A novel method for sentiment word identification. In: CIKM, pp. 1943–1946 (2014)

    Google Scholar 

  10. Lu, Y., Castellanos, M., Dayal, U., Zhai, C.X.: Automatic construction of a context-aware sentiment lexicon: An optimization approach. In: WWW, pp. 347–356 (2011)

    Google Scholar 

  11. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: ACL, pp. 142–150 (2011)

    Google Scholar 

  12. Miller, G.A.: WordNet: A lexical database for English. Communication of the ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  13. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, pp. 271–278 (2004)

    Google Scholar 

  14. Popescu, A., Etzioni, O.: Extracting product features and opinions from reviews. In: EMNLP, pp. 339–346 (2005)

    Google Scholar 

  15. Qiu, G., Liu, B., Bu, J., Chen, C.: Expanding domain sentiment lexicon through double propagation. In: IJCAI, pp. 1199–1204 (2009)

    Google Scholar 

  16. Rao, D., Ravichandran, D.: Semi-supervised polarity lexicon induction. In: EACL, pp. 675–682 (2009)

    Google Scholar 

  17. Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21(4), 315–346 (2003)

    Article  Google Scholar 

  18. Vechtomova, O., Suleman, K., Thomas, J.: An information retrieval-based approach to determining contextual opinion polarity of words. In: ECIR, pp. 507–512 (2014)

    Google Scholar 

  19. Yu, H., Deng, Z.H., Li, S.: Identifying sentiment words using an optimization-based model without seed words. In: ACL, pp. 855–859 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiguang Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liang, J., Zhou, X., Hu, Y., Guo, L., Bai, S. (2015). Sentiment Word Identification with Sentiment Contextual Factors. In: Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds) Web Technologies and Applications. APWeb 2015. Lecture Notes in Computer Science(), vol 9313. Springer, Cham. https://doi.org/10.1007/978-3-319-25255-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25255-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25254-4

  • Online ISBN: 978-3-319-25255-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics