Abstract
Our objective with this paper is to show how we can couple a group of real people and a simulated crowd of virtual humans. We attach group behaviors to the simulated humans to get a plausible reaction to real people. We use a two stage system: in the first stage, a group of people are segmented from a live video, then a human detector algorithm extracts the positions of the people in the video, which are finally used to feed the second stage, the simulation system. The positions obtained by this process allow the second module to render the real humans as avatars in the scene, while the behavior of additional virtual humans is determined by using a simulation based on a social forces model. Developing the method required three specific contributions: a GPU implementation of the codebook algorithm that includes an auxiliary codebook to improve the background subtraction against illumination changes; the use of semantic local binary patterns as a human descriptor; the parallelization of a social forces model, in which we solve a case of agents merging with each other. The experimental results show how a large virtual crowd reacts to over a dozen humans in a real environment.
Similar content being viewed by others
References
Ahonen, T.: Face description with local binary patterns: application to face recognition. Pattern Anal. Mach. Intell. 28(12), 41–2037 (2006). http://www.ncbi.nlm.nih.gov/pubmed/17108377ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1717463
Banerjee, P., Sengupta, S.: Human motion detection and tracking for video surveillance. In: Proceedings of the National Conference of Tracking and Video Surveillance Activity Analysis, pp. 88–92 (2008)
Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. Robot. Res. 70, 3–19 (2011). http://www.springerlink.com/index/15814853H6002Q67.pdf
Van den Berg, J., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE, May 2008. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543489
Bhuvaneswari, K., Rauf, H.A.: Edgelet based human detection and tracking by combined segmentation and soft decision. In: Control, Automation, Communication and Energy Conservation, 4–9 June 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5204487
Bleiweiss, A.: Multi agent navigation on GPU. White paper, GDC (2009). http://www.cs.uu.nl/docs/vakken/mcrs/papers/28.pdf
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893 (2005). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1467360
De Gyves, O., Toledo, L., Rudomín, I.: Comportamientos en simulación de multitudes : revisión del estado del arte. Res. Comput. Sci. 62, 319–334 (2013). Special Issue: Avances en Inteligencia Artificial
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 90–487 (2000). http://www.ncbi.nlm.nih.gov/pubmed/11028994
Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). http://link.aps.org/doi/10.1103/PhysRevE.51.4282
Huang, T.: Discriminative local binary patterns for human detection in personal album. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. IEEE, June 2008. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4587800
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foregroundbackground segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)
Lengvenis, P., Simutis, R., Vaitkus, V., Maskeliunas, R.: Application of computer vision systems for passenger counting in public transport. Electron. Electr. Eng. 19(3), 69–72 (2013). http://www.eejournal.ktu.lt/index.php/elt/article/view/1232
Li, M., Zhang, Z., Huang, K., Tan, T.: Rapid and robust human detection and tracking based on omega-shape features. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2545–2548. IEEE, November 2009. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5414008
Li, T.Y., Wen Lin, J., Liu, Y.L., Ming Hsu, C.: Interactively directing virtual crowds in a virtual environment. Conf. Artif. Real Telexistence vol. 10 (2002). http://dspace2.lib.nccu.edu.tw/bitstream/140.119/15022/1/59.pdf
Millan, E., Hernandez, B., Rudomin, I.: Large crowds of autonomous animated characters using fragment shaders and level of detail. In: Engel, W. (ed.) ShaderX5: Advanced Rendering Techniques, chap. Beyond Pix, pp. 501–510. Charles River Media (2006). http://www.shaderx5.com/TOC.html
Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one 5(4), e10047 (2010)
Mukherjee, S., Das, K.: Omega model for human detection and counting for application in smart surveillance system. Int. J. Adv. Comput. Sci. Appl. 4(2), 167–172 (2013). arXiv preprint arXiv:1303.0633
Ojala, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1017623
Ozturk, O., Yamasaki, T., Aizawa, K.: Tracking of humans and estimation of body/head orientation from top-view single camera for visual focus of attention analysis. In: Computer Vision Workshops (ICCV Workshops), pp. 1020–1027 September 2009. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5457590ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5457590
Pelechano, N., Stocker, C.: Being a part of the crowd: towards validating VR crowds using presence. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 12–16 (2008). http://dl.acm.org/citation.cfm?id=1402407
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). http://portal.acm.org/citation.cfm?doid=37402.37406
Rivalcoba, I.J., Rudomin, I.: Segmentación de peatones a partir de vistas aéreas. Res. Comput. Sci. 62, 129–230 (2013)
Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian manifolds. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 June 2007. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4270222
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-511–I-518 (2001). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=990517
Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. Conf. Comput. Vision 63(2), 153–161 (2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1238422
Wang, Y., Dubey, R., Magnenat-Thalmann, N., Thalmann, D.: An immersive multi-agent system for interactive applications. Vis. Comput. 29(5), 323–332 (2012). http://link.springer.com/10.1007/s00371-012-0735-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rivalcoba, I., Gyves, O.D., Rudomin, I., Pelechano, N. (2015). Simulated Virtual Crowds Coupled with Camera-Tracked Humans. In: Battiato, S., Coquillart, S., Pettré, J., Laramee, R., Kerren, A., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics - Theory and Applications. VISIGRAPP 2014. Communications in Computer and Information Science, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-25117-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-25117-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25116-5
Online ISBN: 978-3-319-25117-2
eBook Packages: Computer ScienceComputer Science (R0)