On Coarser Interval Temporal Logics and their Satisfiability Problem | SpringerLink
Skip to main content

On Coarser Interval Temporal Logics and their Satisfiability Problem

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9422))

Included in the following conference series:

Abstract

The primary characteristic of interval temporal logic is that intervals, rather than points, are taken as the primitive ontological entities. Their computational behaviour is generally bad, and several restrictions have been considered in order to define decidable and computationally affordable temporal logics based on intervals. In this paper we take inspiration from Golumbic and Shamir’s coarser interval algebras, which generalize the classical Allen’s Interval Algebra, in order to define two previously unknown variants of Halpern and Shoham’s logic (\(\mathrm{HS} \)). We prove that one of them (denoted here by \(\mathrm{HS_7} \)) is still generally undecidable, while the other one (\(\mathrm{HS_3} \)) becomes, perhaps surprisingly, PSpace-complete, at least in the finite case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Artale, A., Bresolin, D., Montanari, A., Ryzhikov, V., Sciavicco, G.: DL-lite and interval temporal logics: a marriage proposal. In: Proceedings of the 21st European Conference of Artificial Intelligence (ECAI), pp. 957–958 (2014)

    Google Scholar 

  3. Artale, A., Franconi, E.: A temporal description logic for reasoning about actions and plans. J. Artif. Intell. Reasoning 9, 463–506 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Bettini, C.: Time-dependent concepts: representation and reasoning using temporal description logics. Data Knowedge Engeneering 22(1), 1–38 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives of Mathematical Logic. Springer, Berlin (1997)

    Book  Google Scholar 

  6. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of interval temporal logic: marking the undecidability border. Ann. Math. Artif. Intell. 71(1–3), 41–83 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal logics over finite linear orders: the complete picture. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), pp. 199–204 (2012)

    Google Scholar 

  8. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal logics over strongly discrete linear orders: the complete picture. In: Proceedings of the 4th International Symposium on Games, Automata, Logics, and Formal Verification (GANDALF). EPTCS, vol. 96, pp. 155–169 (2012)

    Google Scholar 

  9. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: On the complexity of fragments of the modal logic of Allen’s relations over dense structures. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 511–523. Springer, Heidelberg (2015)

    Google Scholar 

  10. Bresolin, D., Della Monica, D., Montanari, A., Sciavicco, G.: The light side of interval temporal logic: the Bernays-Schönfinkel fragment of CDT. Ann. Math. Artif. Intell. 71(1–3), 11–39 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bresolin, D., Muñoz-Velasco, E., Sciavicco, G.: Sub-propositional fragments of the interval temporal logic of Allen’s relations. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 122–136. Springer, Heidelberg (2014)

    Google Scholar 

  12. Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science, Springer (2004)

    Google Scholar 

  13. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval logics of Allen’s relations on the class of all linear orders: complete classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 845–850. AAAI Press (2011)

    Google Scholar 

  14. Golumbic, M., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klarman, S.: Practical querying of temporal data via OWL 2 QL and SQL:2011. In: Proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). EPiC Series, vol. 26, pp. 52–61. Center for Artificial Inteligence Research (2014)

    Google Scholar 

  17. Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals. Fundam. Inf. 131(2), 217–240 (2014)

    MATH  MathSciNet  Google Scholar 

  18. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of halpern and Shoham’s modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 345–356. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Montanari, A., Puppis, G., Sala, P., Sciavicco, G.: Decidability of the interval temporal logic \(AB\bar{B}\) on natural numbers. In: Proceedings of the 27th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 597–608. Inria Nancy Grand Est & Loria (2010)

    Google Scholar 

  20. Moszkowski, B.: Reasoning about digital circuits. Ph.D. thesis, Department of Computer Science, Stanford University, Stanford, CA (1983)

    Google Scholar 

  21. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artif. Intell. 166(1–2), 1–36 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schmiedel, A.: Temporal terminological logic. In: Proceedings of the 8th National Conference on Artificial Intelligence (AAAI), pp. 640–645. AAAI Press (1990)

    Google Scholar 

  23. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time (Preliminary Report). In: Proceedings of the 5th Annual ACM Symposium on Theory of Computing (STOC), pp. 1–9. ACM (1973)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Spanish fellowship program ‘Ramon y Cajal’ RYC-2011-07821 (G. Sciavicco), and the Spanish Project TIN12-39353-C04-01 (G. Sciavicco and E. Muñoz-Velasco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Muñoz-Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Muñoz-Velasco, E., Pelegrín-García, M., Sala, P., Sciavicco, G. (2015). On Coarser Interval Temporal Logics and their Satisfiability Problem. In: Puerta, J., et al. Advances in Artificial Intelligence. CAEPIA 2015. Lecture Notes in Computer Science(), vol 9422. Springer, Cham. https://doi.org/10.1007/978-3-319-24598-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24598-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24597-3

  • Online ISBN: 978-3-319-24598-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics