Abstract
Pre-term neonates born with a low birth weight (< 1500g) are at increased risk for developing intraventricular hemorrhage (IVH). 3D ultrasound (US) imaging has been used to quantitatively monitor the ventricular volume in IVH neonates, instead of typical 2D US used clinically, which relies on linear measurements from a single slice and visually estimates to determine ventricular dilation. To translate 3D US imaging into clinical setting, an accurate segmentation algorithm would be desirable to automatically extract the ventricular system from 3D US images. In this paper, we propose an automatic multi-region segmentation approach for delineating lateral ventricles of pre-term neonates from 3D US images, which makes use of multi-phase geodesic level-sets (MP-GLS) segmentation technique via a variational region competition principle and a spatial shape prior derived from pre-segmented atlases. Experimental results using 15 IVH patient images show that the proposed GPU-implemented approach is accurate in terms of the Dice similarity coefficient (DSC), the mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). To the best of our knowledge, this paper reports the first study on automatic segmentation of ventricular system of premature neonatal brains from 3D US images.
Chapter PDF
Similar content being viewed by others
Keywords
References
Adams-Chapman, I., Hansen, N.I., Stoll, B.J., Higgins, R., et al.: Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 121(5), e1167–e1177 (2008)
Klebermass-Schrehof, K., Rona, Z., Waldhör, T., Czaba, C., Beke, A., Weninger, M., Olischar, M.: Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Archives of Disease in Childhood-Fetal and Neonatal Edition 98(4), F291–F297 (2013)
McLean, G., Coombs, P., Sehgal, A., Paul, E., Zamani, L., Gilbertson, T., Ptasznik, R.: Measurement of the lateral ventricles in the neonatal head: Comparison of 2-d and 3-d techniques. Ultrasound in Medicine & Biology (2012)
Kishimoto, J., de Ribaupierre, S., Lee, D., Mehta, R., St Lawrence, K., Fenster, A.: 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates. Physics in Medicine and Biology 58(21), 7513 (2013)
Liu, J., Huang, S., Ihar, V., Ambrosius, W., Lee, L.C., Nowinski, W.L.: Automatic model-guided segmentation of the human brain ventricular system from CT images. Academic Radiology 17(6), 718–726 (2010)
Liu, J., Huang, S., Nowinski, W.L.: Automatic segmentation of the human brain ventricles from MR images by knowledge-based region growing and trimming. Neuroinformatics 7(2), 131–146 (2009)
Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58(3), 805–817 (2011)
Shi, F., Fan, Y., Tang, S., Gilmore, J.H., Lin, W., Shen, D.: Neonatal brain image segmentation in longitudinal MRI studies. NeuroImage 49(1), 391–400 (2010)
Qiu, W., Yuan, J., Kishimoto, J., McLeod, J., de Ribaupierre, S., Fenster, A.: User-guided segmentation of preterm neonate ventricular system from 3d ultrasound images using convex optimization. Ultrasound in Medicine & Biology 41(2), 542–556 (2015)
Qiu, W., Yuan, J., Kishimoto, J., Ukwatta, E., Fenster, A.: Lateral ventricle segmentation of 3D pre-term neonates US using convex optimization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 559–566. Springer, Heidelberg (2013)
Ourselin, S., Stefanescu, R., Pennec, X.: Robust registration of multi-modal images: towards real-time clinical applications. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part II. LNCS, vol. 2489, pp. 140–147. Springer, Heidelberg (2002)
Rajchl, M., Baxter, J.S., Qiu, W., Khan, A.R., Fenster, A., Peters, T.M., Yuan, J.: Rancor: Non-linear image registration with total variation regularization. arXiv preprint arXiv:1404.2571 (2014)
Potts, R.B.: Some generalized order-disorder transformations. Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)
Yuan, J., Ukwatta, E., Tai, X.C., Fenster, A., Schnoerr, C.: A fast global optimization-based approach to evolving contours with generic shape prior. Technical report CAM-12-38, UCLA (2012)
Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)
Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and exact primal-dual iterations for variational problems in computer vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 494–505. Springer, Heidelberg (2010)
Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., Fenster, A.: Dual optimization based prostate zonal segmentation in 3D MR images. Medical Image Analysis 18(4), 660–673 (2014)
Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., Fenster, A.: Prostate segmentation: An efficient convex optimization approach with axial symmetry using 3D TRUS and MR images. IEEE Trans. Med. Imag. 33(4), 947–960 (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Qiu, W. et al. (2015). Automatic 3D US Brain Ventricle Segmentation in Pre-Term Neonates Using Multi-phase Geodesic Level-Sets with Shape Prior. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-24574-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24573-7
Online ISBN: 978-3-319-24574-4
eBook Packages: Computer ScienceComputer Science (R0)