Abstract
In this paper a modified complete spline interpolation based on reduced data is examined in the context of trajectory approximation. Reduced data constitute an ordered collection of interpolation points in arbitrary Euclidean space, stripped from the corresponding interpolation knots. The exponential parameterization (controlled by \(\lambda \in [0,1]\)) compensates the above loss of information and provides specific scheme to approximate the distribution of the missing knots. This approach is commonly used in computer graphics or computer vision in curve modeling and image segmentation or in biometrics for feature extraction. The numerical verification of asymptotic orders \(\alpha (\lambda )\) in trajectory estimation by modified complete spline interpolation is performed here for regular curves sampled more-or-less uniformly with the missing knots parameterized according to exponential parameterization. Our approach is equally applicable to either sparse or dense data. The numerical experiments confirm a slow linear convergence orders \(\alpha (\lambda )=1\) holding for all \(\lambda \in [0,1)\) and a quartic one \(\alpha (1)=4\) once modified complete spline is used. The paper closes with an example of medical image segmentation.
Chapter PDF
Similar content being viewed by others
Keywords
References
Kozera, R.: Curve modeling via interpolation based on multidimensional reduced data. Studia Informatica 25(4B–61), 1–140 (2004)
Noakes, L., Kozera, R.: More-or-less uniform samplings and length of curves. Quarterly of Applied Mathematics 61(3), 475–484 (2003)
de Boor, C.: A Practical Guide to Spline. Springer-Verlag, Heidelberg (1985)
Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)
Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Computer-Aided Design 21(6), 363–370 (1989)
Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-cubics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties of Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 59–75. Kluver Academic Publishers, The Netherlands (2006)
Kozera, R.: Asymptotics for length and trajectory from cumulative chord piecewise-quartics. Fundamenta Informaticae 61(3–4), 267–283 (2004)
Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parameterization for reduced data. Applied Mathematics and Computation 221, 620–638 (2013)
Kozera, R., Noakes, L., Szmielew, P.: Trajectory estimation for exponential parameterization and different samplings. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 430–441. Springer, Heidelberg (2013)
Kozera, R., Noakes, L., Wilkołazka, M.: Piecewise-cubics and exponential parameterization for reduced data (submitted)
Kozera, R., Noakes, L.: \(C^1\) interpolation with cumulative chord cubics. Fundamenta Informaticae 61(3–4), 285–301 (2004)
Kozera, R., Noakes, L., Szmielew, P.: Quartic orders and sharpness in trajectory estimation for smooth cumulative chord cubics. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 9–16. Springer, Heidelberg (2014)
Kozera, R., Noakes, L., Wilkołazka, M.: \(C^1\) interpolation with cumulative chord cubics and exponential parameterization (submitted)
Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA Journal of Numerical Analysis 26, 25–33 (2006)
Wolfram Mathematica 9, Documentation Center. reference.wolfram.com/mathematica/guide/Mathematica.html
Noakes, L., Kozera, R., Klette, R.: Length estimation for curves with different samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 339–351. Springer, Heidelberg (2001)
Janik, M., Kozera, R., Kozioł, P.: Reduced data for curve modeling - applications in graphics, computer vision and physics. Advances in Science and Technology 7(18), 28–35 (2013)
Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)
Yan-Bin, J.: Polynomial Interpolation. Computer Science Notes 477/577, Fall, Iowa State University (2014)
Jupp, D.L.P.: Approximation to data by splines with free knots. Journal on Numerical Analysis 15(2), 328–343 (1978)
Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical methods for searching equilibrium states in a restricted four-body problem. Programming and Computer Software 39(2), 74–80 (2013)
Kozera, R.: Uniqueness in shape from shading revisited. Journal of Mathematical Imaging and Vision 7(2), 123–138 (1997)
Taubin, G.: Estimation of planar and non-planar space curves defined by implicit equations with applications to edge and range segmentation. IEEE Transactions in Pattern Analysis and Machine Intelligence 13(11), 1115–1138 (1991)
Circularly symmetrical eikonal equations and non-uniqueness in computer vision. Journal of Mathematical Analysis and Applications 165, 192–215 (1992)
Kocić, L.M., Simoncelli, A.C., Della Vecchia, B.: Blending parameterization of polynomial and spline interpolants. Facta Universitatis (NIŠ), Series Mathematics and Informatics 5, 95–107 (1990)
Mørken, K., Scherer, K.: A general framework for high-accuracy parametric interpolation. Mathematics of Computation 66(217), 237–260 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 IFIP International Federation for Information Processing
About this paper
Cite this paper
Kozera, R., Noakes, L., Wilkołazka, M. (2015). A Modified Complete Spline Interpolation and Exponential Parameterization. In: Saeed, K., Homenda, W. (eds) Computer Information Systems and Industrial Management. CISIM 2015. Lecture Notes in Computer Science(), vol 9339. Springer, Cham. https://doi.org/10.1007/978-3-319-24369-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-24369-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24368-9
Online ISBN: 978-3-319-24369-6
eBook Packages: Computer ScienceComputer Science (R0)