Abstract
We give improved deterministic algorithms solving sparse instances of MAX-SAT and MAX-k-CSP. For instances with n variables and cn clauses (constraints), we give algorithms running in time \({{\mathrm{poly}}}(n)\cdot 2^{n(1-\mu )}\) for
-
\(\mu = \Omega (\frac{1}{c} )\) and polynomial space solving MAX-SAT and MAX-k-SAT,
-
\(\mu = \Omega (\frac{1}{\sqrt{c}} )\) and exponential space solving MAX-SAT and MAX-k-SAT,
-
\(\mu = \Omega (\frac{1}{ck^2} )\) and polynomial space solving MAX-k-CSP,
-
\(\mu = \Omega (\frac{1}{\sqrt{ck^3}} )\) and exponential space solving MAX-k-CSP.
The previous MAX-SAT algorithms have savings \(\mu =\Omega (\frac{1}{c^2 \log ^2 c})\) for running in polynomial space [15] and \(\mu =\Omega (\frac{1}{c \log c})\) for exponential space [5]. We also give an algorithm with improved savings for satisfiability of depth-2 threshold circuits with cn wires.
R. Chen—Supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement no. 615075.
R. Santhanam—Supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement no. 615075.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)
Chen, J., Kanj, I.: Improved exact algorithms for max-sat. Discrete Applied Mathematics 142(1–3), 17–27 (2004)
Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit lower bound proofs for meta-algorithms. In: Proceedings of the 29th Annual IEEE Conference on Computational Complexity, CCC 2014 (2014)
Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT algorithm for small de morgan formulas. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 165–176. Springer, Heidelberg (2014)
Dantsin, E., Wolpert, A.: MAX-SAT for formulas with constant clause density can be solved faster than in \({{\cal O}}(2^{n})\) time. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 266–276. Springer, Heidelberg (2006)
Fomin, F., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)
Gaspers, S., Sorkin, G.: A universally fastest algorithm for max 2-sat, max 2-csp, and everything in between. J. Comput. Syst. Sci. 78(1), 305–335 (2012)
Golovnev, A., Kutzkov, K.: New exact algorithms for the 2-constraint satisfaction problem. Theor. Comput. Sci. 526, 18–27 (2014)
Impagliazzo, R., Nisan, N.: The effect of random restrictions on formula size. Random Structures and Algorithms 4(2), 121–134 (1993)
Impagliazzo, R., Paturi, R., Schneider, S.: A satisfiability algorithm for sparse depth two threshold circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA, October 26–29, 2013, pp. 479–488 (2013)
Koivisto, M.: Optimal 2-constraint satisfaction via sum-product algorithms. Inf. Process. Lett. 98(1), 24–28 (2006)
Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demorgan formula size. In: Proceedings of the Fifty-Fourth Annual IEEE Symposium on Foundations of Computer Science, pp. 588–597 (2013)
Kulikov, A.S., Kutzkov, K.: New bounds for MAX-SAT by clause learning. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 194–204. Springer, Heidelberg (2007)
Paterson, M., Zwick, U.: Shrinkage of de Morgan formulae under restriction. Random Structures and Algorithms 4(2), 135–150 (1993)
Sakai, T., Seto, K., Tamaki, S.: Solving sparse instances of Max SAT via width reduction and greedy restriction. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 32–47. Springer, Heidelberg (2014)
Santhanam, R.: Fighting perebor: new and improved algorithms for formula and qbf satisfiability. In: Proceedings of the Fifty-First Annual IEEE Symposium on Foundations of Computer Science, pp. 183–192 (2010)
Schuler, R.: An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algorithms 54(1), 40–44 (2005)
Scott, A., Sorkin, G.: Linear-programming design and analysis of fast algorithms for max 2-csp. Discret. Optim. 4(3–4), 260–287 (2007)
Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2–3), 357–365 (2005)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, R., Santhanam, R. (2015). Improved Algorithms for Sparse MAX-SAT and MAX-k-CSP. In: Heule, M., Weaver, S. (eds) Theory and Applications of Satisfiability Testing -- SAT 2015. SAT 2015. Lecture Notes in Computer Science(), vol 9340. Springer, Cham. https://doi.org/10.1007/978-3-319-24318-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-24318-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24317-7
Online ISBN: 978-3-319-24318-4
eBook Packages: Computer ScienceComputer Science (R0)