Efficient Low-Level Connection Tableaux | SpringerLink
Skip to main content

Efficient Low-Level Connection Tableaux

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9323))

Abstract

Many tableaux provers that follow Stickel’s Prolog Technology and lean have been relying on the Prolog compiler for an efficient term representation and the implementation of unification. In particular, this is the case for , the only tableaux prover that regularly takes part in the CASC, the yearly ATP competition. On the other hand, the most efficient superposition provers are typically written in low-level languages, reckoning that the efficiency factor is significant.

In this paper we discuss low-level representations for first-order tableaux theorem proving and present the Bare Metal Tableaux Prover, a implementation of the exact calculus used in the leanCoP theorem prover with its cut semantics. The data structures are designed in such a way that the prove function does not need to allocate any memory. The code is less elegant than the Prolog code, albeit concise and readable. We also measure the constant factor that a high-level programming language incurs: the low-level implementation performs 18 times more inferences per second on an average TPTP CNF problem. We also discuss the implementation improvements which could be enabled by complete access to the internal data structures, such as direct manipulation of backtracking points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R., Wallace, M.: Constraint logic programming using ECLiPSe. Cambridge University Press (2007)

    Google Scholar 

  2. Hoder, K., Voronkov, A.: Comparing unification algorithms in first-order theorem proving. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 435–443. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In: Conference on Automated Deduction, LNCS. Springer (2015, to appear)

    Google Scholar 

  4. Kaliszyk, C., Urban, J., Vyskočil, J.: Certified connection tableaux proofs for HOL Light and TPTP. In: Leroy, X., Tiu, A. (eds.) Proc. of the 4th Conference on Certified Programs and Proofs (CPP 2015), pp. 59–66. ACM (2015)

    Google Scholar 

  5. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vols. 2, pp. 2015–2114. Elsevier and MIT Press (2001)

    Google Scholar 

  8. Moser, M., Ibens, O., Letz, R., Steinbach, J., Goller, C., Schumann, J., Mayr, K.: SETHEO and E-SETHEO – the CADE-13 systems. J. Autom. Reasoning 18(2), 237–246 (1997)

    Article  Google Scholar 

  9. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2-3), 159–182 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36(1-2), 139–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Raths, T., Otten, J.: randocop: Randomizing the proof search order in the connection calculus. In: Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the First International Workshop on Practical Aspects of Automated Reasoning, Sydney, Australia, August 10-11. CEUR Workshop Proceedings, vol. 373, CEUR-WS.org. (2008)

    Google Scholar 

  12. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Sutcliffe, G.: The 4th IJCAR automated theorem proving system competition - CASC-J4. AI Commun. 22(1), 59–72 (2009)

    MathSciNet  Google Scholar 

  15. Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition - CASC-J6. AI Commun. 26(2), 211–223 (2013)

    MathSciNet  Google Scholar 

  16. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 263–277. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1-2), 67–96 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaliszyk, C. (2015). Efficient Low-Level Connection Tableaux. In: De Nivelle, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2015. Lecture Notes in Computer Science(), vol 9323. Springer, Cham. https://doi.org/10.1007/978-3-319-24312-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24312-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24311-5

  • Online ISBN: 978-3-319-24312-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics