Abstract
Dynamic Logic with Traces and Coinduction is a new program logic that has an explicit syntactic representation of both programs and their traces. This allows to prove properties involving programs as well as traces. Moreover, we use a coinductive semantics which makes it possible to reason about non-terminating programs and infinite traces, such as controllers and servers. We develop a sound sequent calculus for our logic that realizes symbolic execution of the programs under verification. The calculus has been developed with the goal of automation in mind. One of the novelties of the calculus is a coinductive invariant rule for while loops that is able to prove termination as well as non-termination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: On branching versus linear time temporal logic. Journal of the ACM 33, 151–178 (1986)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT Press, October 2000
Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)
Beckert, B., Mostowski, W.: A Program Logic for Handling JAVA CARD’s Transaction Mechanism. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 246–260. Springer, Heidelberg (2003)
Hähnle, R., Mostowski, W.: Verification of safety properties in the presence of transactions. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 151–171. Springer, Heidelberg (2005)
Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-guarantee reasoning with ITL. In: Combi, C., Leucker, M., Wolter, F. (eds.) 18th Intl. Symp. on Temporal Representation and Reasoning, pp. 99–106. IEEE (2011)
Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace modalities. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 626–641. Springer, Heidelberg (2001)
Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007)
Beckert, B., Bruns, D.: Dynamic logic with trace semantics. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 315–329. Springer, Heidelberg (2013)
Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step semantics of While. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 488–506. Springer, Heidelberg (2010)
Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step semantics of While. Logical Methods in Computer Science 11(1), 1–32 (2015)
Chang Din, C., Bubel, R., Hähnle, R.: KeY-ABS: A deductive verification tool for the concurrent modelling language ABS. In: Felty, A., Middeldorp, A. (eds.) CADE-25. LNCS (LNAI), pp. 517–526. Springer, Heidelberg (2015)
Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)
Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 422–436. Springer, Heidelberg (2006)
Jeffrey, A., Rathke, J.: Java JR: Fully abstract trace semantics for a core java language. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423–438. Springer, Heidelberg (2005)
Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bubel, R., Din, C.C., Hähnle, R., Nakata, K. (2015). A Dynamic Logic with Traces and Coinduction. In: De Nivelle, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2015. Lecture Notes in Computer Science(), vol 9323. Springer, Cham. https://doi.org/10.1007/978-3-319-24312-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-24312-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24311-5
Online ISBN: 978-3-319-24312-2
eBook Packages: Computer ScienceComputer Science (R0)