Disproving Inductive Entailments in Separation Logic via Base Pair Approximation | SpringerLink
Skip to main content

Disproving Inductive Entailments in Separation Logic via Base Pair Approximation

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2015)

Abstract

We give a procedure for establishing the invalidity of logical entailments in the symbolic heap fragment of separation logic with user-defined inductive predicates, as used in program verification. This disproof procedure attempts to infer the existence of a countermodel to an entailment by comparing computable model summaries, a.k.a. bases (modified from earlier work), of its antecedent and consequent. Our method is sound and terminating, but necessarily incomplete.

Experiments with the implementation of our disproof procedure indicate that it can correctly identify a substantial proportion of the invalid entailments that arise in practice, at reasonably low time cost. Accordingly, it can be used, e.g., to improve the output of theorem provers by returning “no” answers in addition to “yes” and “unknown” answers to entailment questions, and to speed up proof search or automated theory exploration by filtering out invalid entailments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cyclist: software distribution for this paper, https://github.com/ngorogiannis/cyclist/releases/tag/TABLEAUX15

  2. The first Separation Logic Competition (SL-COMP14), http://www.liafa.univ-paris-diderot.fr/~sighirea/slcomp14/

  3. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foundations for decision problems in separation logic with general inductive predicates. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 411–425. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Bell, E.: Exponential numbers. The American Mathematical Monthly 41(7), 411–419 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation logic. In: Proc. POPL-32, pp. 59–70. ACM (2005)

    Google Scholar 

  9. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implications. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure for satisfiability in separation logic with inductive predicates. In: Proc. CSL-LICS, pp. 25:1–25:10. ACM (2014)

    Google Scholar 

  11. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and termination preconditions. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 68–84. Springer, Heidelberg (2014)

    Google Scholar 

  12. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for symbolic-heap separation logic with inductive predicates (2015) (submitted)

    Google Scholar 

  13. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means of bi-abduction. Journal of the ACM 58(6) (2011)

    Google Scholar 

  15. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and bag properties via user-defined predicates in separation logic. Science of Computer Programming 77(9), 1006–1036 (2012)

    Article  MATH  Google Scholar 

  16. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 392–406. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Hurlin, C., Bobot, F., Summers, A.J.: Size does matter: Two certified abstractions to disprove entailment in intuitionistic and classical separation logic. In: Proc. IWACO, pp. 5:1–5:6. ACM (2009)

    Google Scholar 

  19. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 21–38. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for heap-manipulating programs. In: Proc. POPL-37, pp. 211–222. ACM (2010)

    Google Scholar 

  22. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation in C using separation logic. In: Proc. PLDI-35, pp. 440–451. ACM (2014)

    Google Scholar 

  23. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. LICS-17, pp. 55–74. IEEE Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brotherston, J., Gorogiannis, N. (2015). Disproving Inductive Entailments in Separation Logic via Base Pair Approximation. In: De Nivelle, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2015. Lecture Notes in Computer Science(), vol 9323. Springer, Cham. https://doi.org/10.1007/978-3-319-24312-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24312-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24311-5

  • Online ISBN: 978-3-319-24312-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics