Abstract
This talk explores the relationship between coherent (aka “geometric”) logic and first-order logic FOL, with special reference to the coherence/geometricity required of accessibility conditions in Negri’s work on modal logic (and our work with her on intermediate logic). It has been known to some since the 1970s that every first-order theory has a coherent conservative extension, and weaker versions of this result have been used in association with the automation of coherent logic; but, it is hard to find the result in the literature. We discuss various proofs of the result, and present a coherentisation algorithm with the desirable property of being idempotent. An announcement was in [7]; details can be found in [8].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antonius, W.: Théories cohérentes et prétopos, Thèse de Maitrise, Université de Montréal (1975)
Berghofer, S.: Implementation of a coherent logic prover for Isabelle. In: ACL 2008 Workshop (2008), http://wwwbroy.in.tum.de/~berghofe/papers/ACL08_slides.pdf
Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)
Bezem, M., Hendricks, D.: On the mechanization of the proof of Hessenberg’s Theorem in coherent logic. J. Autom. Reasoning 40, 61–85 (2008)
Bourhis, P., Morak, M., Pieris, A.: Towards efficient reasoning under guarded-based disjunctive existential rules. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 99–110. Springer, Heidelberg (2014)
Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Arch. for Math. Logic 51, 71–92 (2012)
Dyckhoff, R., Negri, S.: Coherentisation of accessibility conditions in labelled sequent calculi. In: GSB Workshop, Vienna Summer of Logic (2014)
Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symbol. Logic 21, 123–163 (2015)
Fisher, J., Bezem, M.: Skolem machines. Fundamenta Informaticae 91, 79–103 (2009)
Gogacz, T., Marcinkowski, J.: All–Instances termination of Chase is undecidable. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 293–304. Springer, Heidelberg (2014)
Holen, B., Hovland, D., Giese, M.: Efficient rule-matching for hyper-tableaux. In: Proc. 9th International Workshop on Implementation of Logics, EasyChair Proceedings in Computing Series, vol. 22, pp. 4–17. Easychair (2013)
Johnstone, P.T.: Sketches of an elephant, a topos theory compendium: I and II. Oxford Logic Guides, vols. 43, 44. OUP (2002)
Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34, 507–544 (2005)
Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems of rules. J. Logic & Computation (2014), http://logcom.oxfordjournals.org/content/early/2014/06/13/logcom.exu037
de Nivelle, H., Meng, J.: Geometric resolution: A proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)
Polonsky, A.: Proofs, types, and lambda calculus. PhD thesis, Univ. Bergen (2010)
Stojanović, S., Pavlović, V., Janičić, P.: A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) ADG 2010. LNCS, vol. 6877, pp. 201–220. Springer, Heidelberg (2011)
Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theorem über dichte Mengen. Skrifter I, vol. 4, pp. 1–36. Det Norske Videnskaps-Akademi (1920)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dyckhoff, R. (2015). Invited Talk: Coherentisation of First-Order Logic. In: De Nivelle, H. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2015. Lecture Notes in Computer Science(), vol 9323. Springer, Cham. https://doi.org/10.1007/978-3-319-24312-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-24312-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24311-5
Online ISBN: 978-3-319-24312-2
eBook Packages: Computer ScienceComputer Science (R0)