Contextualized Behavior Patterns for Ambient Assisted Living | SpringerLink
Skip to main content

Contextualized Behavior Patterns for Ambient Assisted Living

  • Conference paper
  • First Online:
Human Behavior Understanding

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9277))

Abstract

Human behavior learning plays an important role in ambient assisted living since it enables service personalization. Current work in human behavior learning do not consider the context under which a behavior occurs, which hides some behaviors that are frequent only under certain conditions. In this work, we present the notion of a contextualized behavior pattern, which describes a behavior pattern with the context in which it occurs (i.e. nap when raining) and propose an algorithm for finding these patterns in a data stream. This is our main contribution. These patterns help to better understand the routine of a user in a smart environment, as is evidenced when testing with a public dataset. This algorithm could be used to learn behaviors from users in an ambient assisted living environment in order to send alarms when behavior changes occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://ailab.wsu.edu/casas/datasets.html.

  2. 2.

    Resperate is a device used to lower blood pressure.

References

  1. Monekosso, D.N., Remagnino, P.: Behavior analysis for assisted living. IEEE Trans. Autom. Sci. Eng. 7, 879–886 (2010)

    Article  Google Scholar 

  2. Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowl. Based Syst. 66, 46–60 (2014)

    Article  Google Scholar 

  3. Iglesias, J.A., Angelov, P., Ledezma, A., Sanchis, A.: Creating evolving user behavior profiles automatically. IEEE Trans. Knowl. Data Eng. 24, 854–867 (2012)

    Article  Google Scholar 

  4. Chua, S., Marsland, S.: Unsupervised learning of human behaviours. In: Twenty-Fifth AAAI Conference, pp. 319–324 (2011)

    Google Scholar 

  5. Pei, J.P.J., Han, J.H.J., Mortazavi-Asl, B., Pinto, H., Chen, Q.C.Q., Dayal, U., Hsu, M.-C.H.M.-C.: PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference Data Engineering (2001)

    Google Scholar 

  6. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS : a smart home in a box. IEEE Comput. 46, 62–69 (2013)

    Article  Google Scholar 

  7. Turaga, P., Member, S., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Mach. Recogn. Hum. Activities Surv. 18, 1473–1488 (2008)

    Google Scholar 

  8. Ryoo, M.S., Aggarwal, J.K.: Recognition of composite human activities through context-free grammar based representation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1709–1716 (2006)

    Google Scholar 

  9. Ordonez, F.J., Englebienne, G., de Toledo, P., van Kasteren, T., Sanchis, A., Kröse, B.: In-home activity recognition: bayesian inference for hidden markov models. IEEE Pervasive Comput. 13, 67–75 (2014)

    Article  Google Scholar 

  10. Forkan, A.R.M., Khalil, I., Tari, Z., Foufou, S., Bouras, A.: A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living. Pattern Recognit. 48, 628–641 (2014)

    Article  Google Scholar 

  11. Rieping, K., Englebienne, G., Kröse, B.: Behavior analysis of elderly using topic models. Pervasive Mobile Comput. 15, 181–199 (2014)

    Article  Google Scholar 

  12. Seiter, J., Amft, O., Rossi, M., Tröster, G.: Discovery of activity composites using topic models: An analysis of unsupervised methods. Pervasive Mob. Comput. 15, 215–227 (2014)

    Article  Google Scholar 

  13. Aztiria, A., Augusto, J.C., Basagoiti, R., Izaguirre, A.: Accurate temporal relationships in sequences of user behaviours in intelligent environments. In: Augusto, J.C., Corchado, J.M., Novais, P., Analide, C. (eds.) Ambient Intelligence and Future Trends-International Symposium on Ambient Intelligence (ISAm I 2010), pp. 19–27. Springer, Berlin Heidelberg (2010)

    Chapter  Google Scholar 

  14. Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K.K., Xu, C., Tapia, E.M.: MobileMiner. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2014 Adjunct), pp. 389–400. ACM Press, New York (2014)

    Google Scholar 

  15. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob. Comput. 5, 277–298 (2009)

    Article  Google Scholar 

  16. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. 43, 1–41 (2010)

    Article  Google Scholar 

  17. Mooney, C.H., Roddick, J.F.: Sequential pattern mining – approaches and algorithms. ACM Comput. Surv. 45, 19 (2013)

    Article  MATH  Google Scholar 

  18. Mallick, B., Garg, D., Grover, P.S.: Incremental mining of sequential patterns : Progress and challenges. Intell. Data Anal. 17, 507–530 (2013)

    Google Scholar 

  19. Soliman, A.F., Ebrahim, G.a., Mohammed, H.K.: SPEDS: a framework for mining sequential patterns in evolving data streams. In: Pacific Rim Conference on Communications, Computers Signal Process, pp. 464–469 (2011)

    Google Scholar 

  20. Moshtaghi, M., Zukerman, I., Russell, R.A.: Statistical models for unobtrusively detecting abnormal periods of inactivity in older adults. User Model User adapt. Interact. 25, 231–265 (2015)

    Article  Google Scholar 

  21. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth methods. J. Intell. Inf. Syst. 28, 133–160 (2007)

    Article  Google Scholar 

  22. Saleh, B., Masseglia, F.: Discovering frequent behaviors: time is an essential element of the context. Knowl. Inf. Syst. 28, 311–331 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lago, P., Jiménez-Guarín, C., Roncancio, C. (2015). Contextualized Behavior Patterns for Ambient Assisted Living. In: Salah, A., Kröse, B., Cook, D. (eds) Human Behavior Understanding. Lecture Notes in Computer Science(), vol 9277. Springer, Cham. https://doi.org/10.1007/978-3-319-24195-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24195-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24194-4

  • Online ISBN: 978-3-319-24195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics