A Novel Edit Propagation Algorithm via $$ L_0 $$ Gradient Minimization | SpringerLink
Skip to main content

A Novel Edit Propagation Algorithm via \( L_0 \) Gradient Minimization

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9314))

Included in the following conference series:

  • 1835 Accesses

Abstract

In this paper, we study how to perform edit propagation using \( L_0 \) gradient minimization. Existing propagation methods only take simple constraints into consideration and neglects image structure information. We propose a new optimization framework making use of \( L_0 \) gradient minimization, which can globally satisfy user-specified edits as well as tackle counts of non-zero gradients. In this process, a modified affinity matrix approximation method which efficiently reduces randomness is raised. We introduce a self-adaptive re-parameterization way to control the counts based on both original image and user inputs. Our approach is demonstrated by image recoloring and tonal values adjustments. Numerous experiments show that our method can significantly improve edit propagation via \( L_0 \) gradient minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, X., Pellacini, F.: Appprop: all-pairs appearance-space edit propagation. ACM Trans. Graph. (TOG) 27, 40 (2008)

    Google Scholar 

  2. Farbman, Z., Fattal, R., Lischinski, D.: Diffusion maps for edge-aware image editing. ACM Trans. Graph. (TOG) 29, 145 (2010)

    Article  Google Scholar 

  3. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27, 67 (2008)

    Article  Google Scholar 

  4. Gastal, E.S., Oliveira, M.M.: Adaptive manifolds for real-time high-dimensional filtering. ACM Trans. Graph. (TOG) 31(4), 33 (2012)

    Article  Google Scholar 

  5. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. (TOG) 26, 96 (2007)

    Article  Google Scholar 

  7. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. (TOG) 23(3), 689–694 (2004)

    Article  Google Scholar 

  8. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

    Article  Google Scholar 

  9. Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM Trans. Graph. (TOG) 25, 646–653 (2006)

    Article  Google Scholar 

  10. Pellacini, F., Lawrence, J.: Appwand: editing measured materials using appearance-driven optimization. ACM Trans. Graph. (TOG) 26, 54 (2007)

    Article  Google Scholar 

  11. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, K., Li, Y., Ju, T., Hu, S.M., Liu, T.Q.: Efficient affinity-based edit propagation using kd tree. ACM Trans. Graph. (TOG) 28, 118 (2009)

    Google Scholar 

  13. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via l 0 gradient minimization. ACM Trans. Graph. (TOG) 30(6), 174 (2011)

    Google Scholar 

  14. Xu, L., Yan, Q., Jia, J.: A sparse control model for image and video editing. ACM Trans. Graph. (TOG) 32(6), 197 (2013)

    Google Scholar 

  15. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 815–830. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoqian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, Z., Wang, H., Li, K., Zhang, Y., Wang, X., Dai, Q. (2015). A Novel Edit Propagation Algorithm via \( L_0 \) Gradient Minimization. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24075-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24074-9

  • Online ISBN: 978-3-319-24075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics