Abstract
We consider a family of new formal operation on words: the prefix square completion, the suffix square completion, and the prefix-suffix square completion. By suffix square completion (respectively, prefix square completion), one can derive from a word w any word wx (respectively, xw) if w has a suffix (respectively, prefix) yxy; by prefix-suffix square completion we derive from a word w any word \(w'\) that is obtained either by prefix square completion or by suffix square completion from w. We discuss two main aspects of these operations. On the one hand, we study the derivation of infinite words by iterated prefix-suffix square completion, and show that, although any word generated by square completion operations contains squares, we can generate infinite words that do not contain any repetition of exponent greater than 2. On the other hand, focusing on finite words, we give a linear time procedure that, given two words, decides whether the longer can be generated by iterated prefix-suffix square completion from the shorter.
The work of Florin Manea was supported by the DFG grant 596676.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
García-López, J., Manea, F., Mitrana, V.: Prefix-suffix duplication. J. Comput. Syst. Sci. 80(7), 1254–1265 (2014)
Dumitran, M., Gil, J., Manea, F., Mitrana, V.: Bounded prefix-suffix duplication. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 176–187. Springer, Heidelberg (2014)
Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania 7, 1–22 (1906)
Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania 1, 1–67 (1912)
Lothaire, M.: Comb. Words. Cambridge University Press, Cambridge (1997)
Allouche, J., Shallit, J.O.: Automatic Sequences - Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)
Damanik, D.: Local symmetries in the period-doubling sequence. Discrete Appl. Math. 100(1–2), 115–121 (2000)
Currie, J.D., Rampersad, N., Saari, K., Zamboni, L.Q.: Extremal words in morphic subshifts. Discrete Math. 322, 53–60 (2014)
Endrullis, J., Hendriks, D., Klop, J.W.: Degrees of streams. Integers Electron. J. Comb. Number Theor. 11B(A6), 1–40 (2011)
Hall, M.: Generators and Relations in Groups - The Burnside Problem. Lectures on Modern Mathematics, vol. 2. Wiley, New York (1964). 42–92
Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53, 918–936 (2006)
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)
Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)
Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proceedings of FOCS, pp. 596–604 (1999)
Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A new characterization of maximal repetitions by Lyndon trees. In: Proceedings of SODA, pp. 562–571 (2015)
Knuth Jr., D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dumitran, M., Manea, F. (2015). Prefix-Suffix Square Completion. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-23660-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23659-9
Online ISBN: 978-3-319-23660-5
eBook Packages: Computer ScienceComputer Science (R0)