Abstract
In this paper we apply two data dimensionality reduction methods to eye movement dataset and analyse how the feature reduction method improves classification accuracy. Due to the specificity of the recording process, eye movement datasets are characterized by both big size and high-dimensionality that make them difficult to analyse and classify using standard classification approaches. Here, we analyse eye movement data from BioEye 2015 competition and to deal with the problem of high dimensionality we apply SVM combined with PCA feature extraction and random forests wrapper variable selection. Our results show that the reduction of the number of variables improves classification results. We also show that some of classes (participants) can be classified (recognised) with high accuracy while others are very difficult to be correctly identified.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

References
Aggarwal, C.C.: Data Classification: Algorithms and Applications. Data Mining and Knowledge Discovery. Hapman and Hall CRC, Boca Raton (2014)
Bednarik, R., Kinnunen, T., Mihaila, A., Fränti, P.: Eye-movements as a biometric. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) Image Analysis. LNCS, vol. 3540, pp. 780–789. Springer, Berlin (2005)
Bensch, M., Schroder, M., Bogdan, M., Rosenstiel, W.: Feature selection for high-dimensional industrial data. In: ESANN 2005. pp. 375–380. Bruges, Belgium (2005)
Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD workshop 1994. vol. 10, pp. 359–370. Seattle, USA (1994)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Burges, C.J.C.: Dimension reduction: a guided tour. Found. Trends Mach. Learn. 2(4), 275–365 (2010)
Díaz-Uriarte, R., Alvarez de Andrés, S.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7(1), 3 (2006)
Gregorutti, B., Michel, B., Saint Pierre, P.: Correlation and variable importance in random forests. arXiv:1310.5726. (2015)
Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)
Holzer, S., Ilic, S., Tan, D., Navab, N.: Efficient learning of linear predictors using dimensionality reduction. In: Lee, K., Matsushita, Y., Rehg, J., Hu, Z. (eds.) Computer Vision–ACCV 2012, LNCS, vol. 7726, pp. 15–28. Springer, Berlin (2013)
Kasprowski, P., Harezlak, K.: The second eye movements verification and identification competition. In: IJCB 2014. pp. 1–6. Clearwater, USA (2014)
Kasprowski, P., Komogortsev, O.V., Karpov, A.: First eye movement verification and identification competition at BTAS 2012. In: BTAS 2012. pp. 195–202. Arlington, USA (2012)
Kasprowski, P., Ober, J.: Eye movements in biometrics. In: Maltoni, D., Jain, A.K. (eds.) Biometric Authentication. LNCS, vol. 3087, pp. 248–258. Springer, Berlin (2004)
Kohavi, R., Johnb, G.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)
Kursa, M., Jankowski, A., Rudnicki, W.: Boruta—a system for feature selection. J. Am. Water Work. Assoc. Fundamenta Informaticae 101(4), 271–285 (2010)
Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
Miller, R., Chen, C., Eick, C., Bagherjeiran, A.: A framework for spatial feature selection and scoping and its application to geo-targeting. In: ICSDM 2011. pp. 26–31. Detroit, USA (2011)
Pekalska, E., Duin, R.P., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognit. 39(2), 189–208 (2006)
Saeed, U.: A survey of automatic person recognition using eye movements. Int. J. Pattern Recognit. Artif. Intell. 28(08), 1456015 (2014)
Sikora, M.: Redefinition of decision rules based on the importance of elementary conditions evaluation. Fundamenta Informaticae 123(2), 171–197 (2013)
Sikora, M., Gruca, A.: Quality improvement of rule-based gene group descriptions using information about go terms importance occurring in premises of determined rules. Appl. Math. Comput. Sci. 20(3), 555–570 (2010)
Svetnik, V., Liaw, A., Tong, C., Wang, T.: Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In: Roli, F., Kittler, J., Windeatt, T. (eds.) Multiple Classifier Systems. LNCS, vol. 3077, pp. 334–343. Springer, Berlin (2004)
Touw, W., Bayjanov, J., Overmars, L., Backus, L., Boekhorst, J., Wels, M., van Hijum, S.: Data mining in the life sciences with random forest: a walk in the park or lost in the jungle. Brief. Bioinform. 14(3), 315–326 (2013)
Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. In: NIPS 1996. pp. 281–287. Denver, USA (1996)
Acknowledgments
The work was partially supported by National Science Centre (decision DEC-2011/01/D/ST6/07007) (A.G). Computations were performed with the use of the infrastructure provided by the NCBIR POIG.02.03.01-24-099/13 grant: GCONiI - Upper-Silesian Center for Scientific Computations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Gruca, A., Harezlak, K., Kasprowski, P. (2016). Application of Dimensionality Reduction Methods for Eye Movement Data Classification. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-23437-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23436-6
Online ISBN: 978-3-319-23437-3
eBook Packages: EngineeringEngineering (R0)