Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Fuzzy Image Processing | SpringerLink
Skip to main content

Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Fuzzy Image Processing

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9250))

Included in the following conference series:

  • 2689 Accesses

Abstract

Diabetic retinopathy is a damage of the retina and it is one of the serious consequences of the diabetes. Early detection of diabetic retinopathy is extremely important in order to prevent premature visual loss and blindness. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. The detection of maculopathy is essential as it will eventually cause loss of vision if the affected macula is not timely treated. The developed system consists of image acquisition, image preprocessing with a combination of fuzzy techniques, feature extraction, and image classification by using several machine learning techniques. The fuzzy-based image processing decision support system will assist in the diabetic retinopathy screening and reduce the burden borne by the screening team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Taylor, R., Batey, D.: Handbook of retinal screening in diabetes: diagnosis and management. John Wiley & Sons Ltd., England (2012)

    Book  Google Scholar 

  2. Wilkinson, C.P., Ferris, F.L., Klein, R.E., Lee, P.P., Agardh, C.D., Davis, M., Dills, D., Kampik, A., Pararajasegaram, R., Verdaguer, J.T.: Proposed International Clinical Diabetic Retinopathy and Diabetic Macula Edema Disease Severity Scales. American Academy of Ophthalmology 110(9), 1677–1682 (2003)

    Article  Google Scholar 

  3. Early Treatment Diabetic Retinopathy Study Research Group.: Grading diabetic retinopathy from stereoscopic color fundus photographs- an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 98(5 suppl.), 823–833 (1991)

    Google Scholar 

  4. Jayne, C., Rahim, S.S., Palade, V., Shuttleworth, J.: Automatic Screening and Classification of Diabetic Retinopathy Fundus Images. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 113–122. Springer, Heidelberg (2014)

    Google Scholar 

  5. Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C., Raja Omar, R.N.: Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In: Iliadis, L. et al. (eds.) Engineering Applications of Neural Networks. CCIS, vol. 517. Springer, Heidelberg (2015)

    Google Scholar 

  6. Mookiah, M.R.K., Acharya, U.R., Martis, R.J., Chua, C.K., Lim, C.M., Ng, E.Y.K., Laude, A.: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowledge-Based Systems 39, 9–22 (2013)

    Article  Google Scholar 

  7. Priya, R., Aruna, P.: Review of automated diagnosis of diabetic retinopathy using the support vector machine. International Journal of Applied Engineering Research 1(4), 844–863 (2011)

    Google Scholar 

  8. Vimala, A.G.S.G., Kajamohideen, S.: Detection of diabetic maculopathy in human retinal images using morphological operations. Online J. Biol. Sci. 14, 175–180 (2014)

    Article  Google Scholar 

  9. Tariq, A., Akram, M.U., Shaukat, A., Khan, S.A.: Automated detection and grading of diabetic maculopathy in digital retinal images. J. Digit Imaging 26(4), 803–812 (2013)

    Google Scholar 

  10. Siddalingaswamy, P.C., Prabhu, K.G.: Automatic grading of diabetic maculopathy severity levels. In: 2010 International Conference on Systems in Medicine and Biology, pp. 331–334. IEEE, New York (2010)

    Google Scholar 

  11. Punnolil, A.: A novel approach for diagnosis and severity grading of diabetic maculopathy. In: 2013 International Conference on Advances in Computing, Communications and Informatics, pp. 1230–1235. IEEE, New York (2013)

    Google Scholar 

  12. Hunter, A., Lowell, J.A., Steel, D., Ryder, B., Basu, A.: Automated diagnosis of referable maculopathy in diabetic retinopathy screening. In: Annual international of the IEEE Engineering in Medicine and Bilogy Society, EMBS, pp. 3375–3378. IEEE, New York (2011)

    Google Scholar 

  13. Chowriappa, P., Dua, S., Rajendra, A.U., Muthu, R.K.M.: Ensemble selection for feature-based classification of diabetic maculopathy images. Computers in Biology and Medicine 43(12), 2156–2162 (2013)

    Google Scholar 

  14. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic Fuzzy Histogram Equalization. IEEE Transactions on Consumer Electronics 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  15. Garud, H., Sheet, D., Suveer, A., Karri, P.K., Ray, A.K., Mahadevappa, M., Chatterjee, J.: Brightness preserving contrast enhancement in digital pathology. In: 2011 International Conference on Image Information Processing (ICIIP 2011), pp. 1–5. IEEE, New York (2011)

    Google Scholar 

  16. Patil, J., Chaudhari, A.L.: Development of digital image processing using Fuzzy Gaussian filter tool for diagnosis of eye infection. International Journal of Computer Applications 51(19), 10–12 (2012)

    Article  Google Scholar 

  17. Toh, K.K.V., Mat Isa, N.A.: Noise adaptive Fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters 17(3), 281–284 (2010)

    Google Scholar 

  18. Kwan, H.K.: Fuzzy filters for noisy image filtering. In: IEEE International Symposium on Circuits and Systems 2003 (ISCAS 2003), vol. 4, pp. 161–164. IEEE, New York (2003)

    Google Scholar 

  19. Duin, R.P.W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D.M.J., Verzakov, S.: PRTools4.1, A Matlab Toolbox for Pattern Recognition, Delft University of Technology (2007)

    Google Scholar 

  20. Holzinger, A.: Human-Computer Interaction and Knowledge Discovery (HCI-KDD): What Is the Benefit of Bringing Those Two Fields to Work Together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Holzinger, A., Malle, B., Giuliani, N.: On Graph Extraction from Image Data. In: Slezak, D., Peters, J.F., Tan, A.-H., Schwabe, L. (eds.) Lecture Notes in Artificial Intelligence, LNAI 8609, pp. 552–563. Springer, Heidelberg, Berlin (2014)

    Google Scholar 

  22. Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.: Darwin, Lamarck, or Baldwin: Applying Evolutionary Algorithms to Machine Learning Techniques. In: The 2014 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2014), pp. 449–453. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarni Suhaila Rahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rahim, S.S., Palade, V., Jayne, C., Holzinger, A., Shuttleworth, J. (2015). Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Fuzzy Image Processing. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23344-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23343-7

  • Online ISBN: 978-3-319-23344-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics