Abstract
In this paper we present a solution for tracking-by-detection that is able to handle both scale variations and occlusions of the tracked object. We build upon the framework proposed in [7] based on structured output SVM and improve it in order to deal with both variations of target scale and occlusions. We first propose to modify the original solution to include the scale variations both in the patch sampling stage and in the structured output state. Then in order to deal with occlusions we introduce an incremental classifier to discriminate the target from the context. This classifier combines a learning phase with a unlearning one that help to avoid drift in the model of the tracked object. The proposed solution outperforms the method in [7] for sequences that present scale variations or occlusions while maintaining comparable performance on those sequences with none of these issues. Moreover, we outperform other state-of-the-art solutions on publicly available sequences commonly used in literature.
Chapter PDF
Similar content being viewed by others
References
Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29, 261–271 (2007)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. Pattern Analysis and Machine Intelligence 33(8), 1619–1632 (2011)
Collins, R., Liu, Y.: On-line selection of discriminative tracking features. In: Proc. of ICCV (2003)
Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: Proc. of CVPR (2011)
Dinh, T.B., Yu, Q., Medioni, G.: Co-trained generative and discriminative trackers with cascade particle filter. Computer Vision and Image Understanding 119, 41–56 (2014)
Gu, S., Zheng, Y., Tomasi, C.: Efficient Visual Object Tracking with Online Nearest Neighbor Classifier. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 271–282. Springer, Heidelberg (2011)
Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels. In: Proc. of ICCV (2011)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: Bootstrapping binary classifiers by structural constraints. In: Proc. of CVPR (2010)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. Pattern Analysis and Machine Intelligence 34(7), 1409–1422 (2012)
Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: Proc. of CVPR (2011)
Matthews, I., Ishikawa, T., Baker, S.: The template update problem. In: Proc. of BMVC (2003)
Mei, X., Ling, H.: Robust visual tracking using 1 minimization. In: ICCV 2009, pp. 1436–1443 (2009)
Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(3), 61–74 (1999)
Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: Prost: Parallel robust online simple tracking. In: Proc. of CVPR (2010)
Soatto, S.: Actionable information in vision. In: Proc. of ICCV (2009)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: Proc. of CPVR (2013)
Yu, Q., Dinh, T.B., Medioni, G.G.: Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)
Zhang, K., Zhang, L., Yang, M.-H.: Real-Time Compressive Tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mazzeschi , A., Lisanti, G., Pernici, F., Del Bimbo, A. (2015). Scale and Occlusion Invariant Tracking-by-Detection. In: Murino, V., Puppo, E. (eds) Image Analysis and Processing — ICIAP 2015. ICIAP 2015. Lecture Notes in Computer Science(), vol 9280. Springer, Cham. https://doi.org/10.1007/978-3-319-23234-8_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-23234-8_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23233-1
Online ISBN: 978-3-319-23234-8
eBook Packages: Computer ScienceComputer Science (R0)