Abstract
In this paper, we propose a simple nonlinear filter which improves the detection of pedestrians walking in a video. We do so by first cumulating temporal gradient of moving objects into a motion history image (MHI). Then we apply to each frame of the video a motion-guided nonlinear filter whose goal is to smudge out background details while leaving untouched foreground moving objects. The resulting blurry-background image is then fed to a pedestrian detector. Experiments reveal that for a given miss rate, our motion-guided nonlinear filter can decrease the number of false positives per image (FPPI) by a factor of up to 26. Our method is simple, computationally light, and can be applied on a variety of videos to improve the performances of almost any kind of pedestrian detectors.
Chapter PDF
Similar content being viewed by others
References
Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: IEEE-C-CVPR, pp. 2903–2910 (2012)
Chen, G., Ding, Y., Xiao, J., Han, T.X.: Detection evolution with multi-order contextual co-occurrence. In: IEEE-C-CVPR, pp. 1798–1805 (2013)
Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)
Davis, J.W.: Hierarchical motion history images for recognizing human motion. In: IEEE-W-Det. and Rec. of Eve. in Vid., pp. 39–46 (2001)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE-T-PAMI 34(4), 743–761 (2012)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE-T-PAMI (2010)
Fernández-Caballero, A., Castillo, J., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Exp. Sys. with App. 38(3), 2577–2584 (2011)
Lin, Z., Davis, L.S.: Shape-based human detection and segmentation via hierarchical part-template matching. IEEE-T-PAMI 32(4), 604–618 (2010)
Ouyang, W., Wang, X.: Single-pedestrian detection aided by multi-pedestrian detection. In: IEEE-C-CVPR, pp. 3198–3205 (2013)
Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: IEEE-C-CVPR (2013)
Wang, M., Li, W., Wang, X.: Transferring a generic pedestrian detector towards specific scenes. In: IEEE-C-CVPR, pp. 3274–3281 (2012)
Wang, X., Wang, M., Li, W.: Scene-specific pedestrian detection for static video surveillance. IEEE-T-PAMI 36(2), 361–374 (2014)
Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: Cdnet 2014: an expanded change detection benchmark dataset. In: IEEE-W-CVPRW, pp. 393–400 (2014)
Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people detection. In: Pat. Rec., pp. 82–91 (2008)
Wu, J., Rehg, J.M.: Centrist: A visual descriptor for scene categorization. IEEE-T-PAMI 33(8), 1489–1501 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, Y., Piérard, S., Su, SZ., Jodoin, PM. (2015). Nonlinear Background Filter to Improve Pedestrian Detection. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds) New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops. ICIAP 2015. Lecture Notes in Computer Science(), vol 9281. Springer, Cham. https://doi.org/10.1007/978-3-319-23222-5_65
Download citation
DOI: https://doi.org/10.1007/978-3-319-23222-5_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23221-8
Online ISBN: 978-3-319-23222-5
eBook Packages: Computer ScienceComputer Science (R0)