Smallest MUS Extraction with Minimal Hitting Set Dualization | SpringerLink
Skip to main content

Smallest MUS Extraction with Minimal Hitting Set Dualization

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9255))

Abstract

Minimal explanations of infeasibility are of great interest in many domains. In propositional logic, these are referred to as Minimal Unsatisfiable Subsets (MUSes). An unsatisfiable formula can have multiple MUSes, some of which provide more insights than others. Different criteria can be considered in order to identify a good minimal explanation. Among these, the size of an MUS is arguably one of the most intuitive. Moreover, computing the smallest MUS (SMUS) finds several practical applications that include validating the quality of the MUSes computed by MUS extractors and finding equivalent subformulae of smallest size, among others. This paper develops a novel algorithm for computing a smallest MUS, and we show that it outperforms all the previous alternatives pushing the state of the art in SMUS solving. Although described in the context of propositional logic, the presented technique can also be applied to other constraint systems.

This work is partially supported by SFI PI grant BEACON (09/IN.1/ I2618), FCT grant POLARIS (PTDC/EIA-CCO/123051/2010) and national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  4. Chandrasekaran, K., Karp, R.M., Moreno-Centeno, E., Vempala, S.: Algorithms for implicit hitting set problems. In: SODA, pp. 614–629 (2011)

    Google Scholar 

  5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Gupta, A.: Learning Abstractions for Model Checking. PhD thesis, Carnegie Mellon University, June 2006

    Google Scholar 

  9. Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability: a core-guided approach. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 250–266. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in package management systems. In: ICSE, pp. 745–755 (2014)

    Google Scholar 

  11. Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 151–151. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J., Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas. Constraints 14(4), 415–442 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration. Constraints (2015). http://dx.doi.org/10.1007/s10601-015-9183-0

  15. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413 (2008)

    Google Scholar 

  17. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1), 75–97 (2003)

    Google Scholar 

  19. Stern, R.T., Kalech, M., Feldman, A., Provan, G.M.: Exploring the duality in conflict-directed model-based diagnosis. In: AAAI, pp. 828–834 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ignatiev, A., Previti, A., Liffiton, M., Marques-Silva, J. (2015). Smallest MUS Extraction with Minimal Hitting Set Dualization. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23219-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23218-8

  • Online ISBN: 978-3-319-23219-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics