Abstract
Minimal explanations of infeasibility are of great interest in many domains. In propositional logic, these are referred to as Minimal Unsatisfiable Subsets (MUSes). An unsatisfiable formula can have multiple MUSes, some of which provide more insights than others. Different criteria can be considered in order to identify a good minimal explanation. Among these, the size of an MUS is arguably one of the most intuitive. Moreover, computing the smallest MUS (SMUS) finds several practical applications that include validating the quality of the MUSes computed by MUS extractors and finding equivalent subformulae of smallest size, among others. This paper develops a novel algorithm for computing a smallest MUS, and we show that it outperforms all the previous alternatives pushing the state of the art in SMUS solving. Although described in the context of propositional logic, the presented technique can also be applied to other constraint systems.
This work is partially supported by SFI PI grant BEACON (09/IN.1/ I2618), FCT grant POLARIS (PTDC/EIA-CCO/123051/2010) and national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013)
Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Chandrasekaran, K., Karp, R.M., Moreno-Centeno, E., Vempala, S.: Algorithms for implicit hitting set problems. In: SODA, pp. 614–629 (2011)
Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)
Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)
Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)
Gupta, A.: Learning Abstractions for Model Checking. PhD thesis, Carnegie Mellon University, June 2006
Ignatiev, A., Janota, M., Marques-Silva, J.: Quantified maximum satisfiability: a core-guided approach. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 250–266. Springer, Heidelberg (2013)
Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in package management systems. In: ICSE, pp. 745–755 (2014)
Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 151–151. Springer, Heidelberg (2010)
Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)
Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J., Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas. Constraints 14(4), 415–442 (2009)
Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration. Constraints (2015). http://dx.doi.org/10.1007/s10601-015-9183-0
Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)
Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: DATE, pp. 408–413 (2008)
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1), 75–97 (2003)
Stern, R.T., Kalech, M., Feldman, A., Provan, G.M.: Exploring the duality in conflict-directed model-based diagnosis. In: AAAI, pp. 828–834 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ignatiev, A., Previti, A., Liffiton, M., Marques-Silva, J. (2015). Smallest MUS Extraction with Minimal Hitting Set Dualization. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-23219-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23218-8
Online ISBN: 978-3-319-23219-5
eBook Packages: Computer ScienceComputer Science (R0)