Abstract
In this paper, we present a new image patch descriptor for object detection and image matching. The descriptor is based on the standard HoG pipeline. The descriptor is generated in a novel way, by embedding the response of an oriented anisotropic derivative half Gaussian kernel in the Histogram of Orientation Gradient (HoG) framework. By doing so, we are able to bin more curvature information. As a result, our descriptor performs better than the state of art descriptors such as SIFT, GLOH and DAISY. In addition to this, we repeat the same procedure by replacing the anisotropic derivative half Gaussian kernel with a computationally less complex anisotropic derivative half exponential kernel and achieve similar results. The proposed image descriptors using both the kernels are very robust and shows promising results for variations in brightness, scale, rotation, view point, blur and compression. We have extensively evaluated the effectiveness of the devised method with various challenging image pairs acquired under varying circumstances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 1615–1630 (2005)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.J.: Speeded-up robust features. In: Computer Vision and Image Understanding, vol. 110, pp. 346–359 (2008)
Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: IEEE International Conference on Computer Vision (ICCV), pp. 603–610, November 2011
Morel, J.M., Yu, G.: ASIFT: A New Framework for Fully Affine Invariant Image Comparison. Journal on Imaging Sciences 2, 438–469 (2009)
Tola, E., Lepetit, V., Fua, P.: DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo. TPAMI 32, 815–830 (2010)
Dalal, N., Triggs, T.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)
Schmid, C., Mohr, R.: Local Gray-value Invariants for Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 9, 530–535 (1997)
Koenderink, J.J., Van Doorn, A.J.: Representation of local geometry in the visual system. Biological Cybernetics 55, 367–375 (1987)
Larsen, A.B.L., Darkner, S., Dahl, A.L., Pedersen, K.S.: Jet-based local image descriptors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 638–650. Springer, Heidelberg (2012)
Palomares, J.L., Montesinos, P., Diep, D.: A new affine invariant method for image matching. In: 3DIP Image Processing and Applications, vol. 8290 (2012)
Monroy, A., Eigenstetter, A., Ommer, B.: Beyond straight lines - object detection using curvature. In: ICIP, pp. 3561–3564 (2011)
Zitnick, C.L.: Binary coherent edge descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 170–182. Springer, Heidelberg (2010)
Eigenstetter, A., Ommer, B.: Visual Recognition using Embedded Feature Selection for Curvature Self-Similarity, Curran Associates, Inc. (2012)
Magnier, B., Montesinos, P.: Evolution of image regularization with PDEs toward a new anisotropic smoothing based on half kernels. In: SPIE, Image Processing: Algorithms and Systems XI (2013)
Montesinos, P., Magnier, B.: A new perceptual edge detector in color images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part I. LNCS, vol. 6474, pp. 209–220. Springer, Heidelberg (2010)
Deriche, R.: Recursively implementing the gaussian and its derivatives. In: ICIP, pp. 263–267 (1992)
Shen, J., Castan, S.: An optimal linear operator for step edge detection. Graphical Model and Image Processing (CVGIP) 54, 112–133 (1992)
Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision (IJCV) 60, 63–86 (2004)
Acknowledgments
This work is funded by L’institut mediterraneen des metiers de la longevite (I2ML), Nimes, France.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Venkatrayappa, D., Montesinos, P., Diep, D., Magnier, B. (2015). A Novel Image Descriptor Based on Anisotropic Filtering. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-23192-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23191-4
Online ISBN: 978-3-319-23192-1
eBook Packages: Computer ScienceComputer Science (R0)